Refining FreeBSD's Kernel Crypto Framework

John Baldwin
BSDCan
June 2022
Overview

• What is the kernel crypto framework?
• Brief History
• Changes in FreeBSD 13
• Future Work
What is OCF?

• OCF (formerly OpenBSD Crypto Framework, now Open Crypto Framework) is an interface around crypto drivers

• Supports symmetric operations (encryption, authentication)

• Aimed at supporting in-kernel uses (IPsec, KTLS, GELI)

• Does not include “library” APIs for direct software crypto
 – Software ”drivers” sometimes use these APIs
OCF History

• OCF originally ported from OpenBSD to FreeBSD 5.0 by Sam Leffler
• Initial version supported IPsec and userland /dev/crypto interface
• Supported asymmetric operations useful for public-key via /dev/crypto
• Contemporary ciphers: DES-CBC, MD5, SHA-1, Encrypt-then-Authenticate (EtA)
OCF History

• AES-GCM added as an Authenticated Encryption with Associated Data (AEAD) algorithm in 11.0 by John-Mark Gurney
• OpenSSL’s engine using /dev/crypto rewritten in 1.1.0 dropping asymmetric support
Motivation

• Worked on porting two crypto drivers from Linux to FreeBSD in 12.0-CURRENT

• Netflix’s KTLS used a home-grown crypto layer due to OCF performing poorly
State of OCF in 11

• Sessions described by a linked-list of structures
• Operations described by a linked-list of descriptors
• Drivers would typically walk the linked-lists once to determine cipher vs auth before performing other checks
State of OCF in 11

- AEAD integration was workable, but not always intuitive
 - Separate algorithms for cipher and auth
 - Shared key specified twice for each
 - Auth descriptor described AAD, auth was implicit for cipher descriptor (did not match how EtA worked)
 - MAC/tag verified in driver (EtA verified in consumer)
State of OCF in 11

• IV handling was a kind of tri-state to support random IV’s generated by hardware
 – But no drivers in the tree did this

• Crypto session handles shared between drivers and consumers were integer IDs
 – Required drivers to map integer to private pointer for each operation
 – Drivers either used an O(n) loop that did not scale or table with a lock
What To Do?

• From a driver author’s perspective, OCF was clunky and obtuse
• OCF seemed overly flexible
 – Arbitrary linked lists of operations
• Modern hardware and use cases (IPsec and TLS) were more constrained
 – Combinations of only two operations (AEAD, MtE, EtA)
 – Fairly consistent layout of buffers (AAD, IV, payload, MAC)
Goal: Make OCF Easier to Work With

• As a driver author, I just wanted something less painful
 – Replace linked lists with flat structures
 – Abstractions around crypto buffers
• Wanted some different flexibility for KTLS
 – Separate input/output buffers
 – Separate AAD buffers
• Was not aiming for performance
 – But reducing complexity might help
One fix in FreeBSD 12

• Crypto session integer ids replaced with opaque crypto_session_t type by Conrad Meyer

• Object is a pointer to an allocated structure that contains a pointer to a driver-private structure allocated by the framework
 – crypto_get_driver_session

• Replaces locked O(n) lookup in operations with lock-less O(1)
Session Parameters

• New structure describing session parameters:
 struct crypto_session_params
 – Explicit mode (Cipher, Digest, EtA, AEAD, Compression)
 – Algorithms and parameters (e.g. key and MAC lengths)
 – Flags for optional features
 – Session keys if not using per-op keys
Session Probe

• New device driver hook: cryptodev_probesession
• Previously, drivers claimed support for algorithms and OCF assumed combinations like EtA were supported
 – Driver would have to fail session creation if unsupported
• Driver’s probe hook can check all session parameters
• Probe hook returns a bidding value like device probe routines
 – Differentiate accelerated software (e.g. AES-NI) vs co-processor
Request Structure

• Linked-list of descriptors replaced with new inline members
 – Start and length of AAD, payload, MAC
 – Separate IV buffer
 – Per-request keys

• Crypto buffer fields moved into separate structure (still stored inline)
IV / Nonce

• Tri-state removed by moving random generation out of drivers and into OCF itself
 – IV exists either in separate buffer or inline from driver’s perspective

• crypto_read_iv helper eliminated copy/pasted code in almost all drivers
Crypto Buffers

• New type: `struct crypto_buffer`
• Supported flat buffers, iovecs, and mbufs initially
• Later extended with array of pages by Alan Somers
• Cursor objects permit iterating over virtual address ranges in drivers and software backends
• New `bus_dma` method for drivers
Semantic Changes

• AEAD algorithms now have a single algorithm and key
• Drivers validate EtA MAC during decrypt operations like AEAD
Testing Drivers

• Testing coverage for drivers was uneven
 – NIST KAT tests for AES-GCM and AES-CBC added by John-Mark Gurney in 11.0

• Useful to have reproducible, simple KAT tests for all algorithms

• New tool: cryptocheck
 – Generates a random buffer, key, and IV/nonce
 – Uses OpenSSL as gold standard
 – Can test various AAD and buffer sizes
Later Extensions

• Added as new flags in session parameters
 – Drivers can opt-in
 – Support in software fallback required
• Separate input and output buffers
• Separate AAD buffer
• IPsec ESN added by Semihalf
New Ciphers Added

• AES-CCM (AEAD) for ZFS
• ChaCha20-Poly1305 and XChaCha20-Poly1305 (both AEAD) for TLS and WireGuard
Things Removed

• Asymmetric cryptography (Gone in 14)
 – Modern OpenSSL doesn’t use it
 – Undocumented
 – No software fallback, limited driver support

• Various older ciphers deprecated by industry (Gone in 13)
 – DES, 3DES, Blowfish, MD5 HMAC
Is It Better?

• Less duplicated code in drivers
• Less “busy” work in drivers (don’t have to intuit mode from linked-list)
• KTLS now uses OCF instead of custom framework
• Other developers have added extensions
 – Unmapped I/O for GELI (Alan Somers)
 – IPsec ESN (Semihalf)
Future Work

• Scheduling of async requests (Mark Johnston has done some work here, but semantics still a bit odd)
• Move compression out of OCF
• Split consumer sessions (IPsec) from driver sessions
Q & A

• Thanks to Chelsio Communications and Netflix for sponsoring much of my work

• Questions?