ELF Nightmares:
GQOTs, PLTs, and Relocations
Oh My

John Baldwin
BSDCan
13 June 2025



Overview

* The problem

* Relocations

* Code generation modes

* GOT indirection

* Function indirection via PLT

* Code generation revisited

* Copy Relocations and Canonical PLT Entries
* Indirect functions



The Problem: Mapping Symbols to Addresses

* Source code refers to functions and data objects by symbol names
* Machine code refers to functions and data by addresses

#include <stdio.h> _
printf()

int main(void) /
{ %%
printf(“hello world\n”);

\ return (0); el




A few definitions (1)

* A compiler translates source code from one language into another
e Often the second language is assembly
 clang, gcc

* An assembler generates object files containing machine code and
initial data values

* Object files are generally split into sections where each section holds a single
type of data

* clang, as



A few definitions (2)

* A static linker merges sections from one or more object files into an
output executable or shared library (linked output file)

* Executables can be either static or dynamic
* |d.lld, Id.bfd

* A run-time loader prepares a dynamic executable for execution
including loading dependencies (shared libraries)
* Also called dynamic linker, run-time linker
* |d-elf.so.1



The Problem: Refined

* Converting source code into machine code is a multi-step process

* Machine code is generated by the compiler and assembler and
stored in object files

* But the final addresses of symbols are not known until the executable
is linked by the static linker

 Solution: The static linker patches generated machine code and data
with the final addresses

* New problem: How to describe this patching?



Linking a Static Executable

* Each object file is assembled to run at address zero

 As the static linker combines input sections from object files it
rearranges input sections (e.g. merging all .text input sections into a
single .text output section)

* Once the input sections are merged and laid out, the static linker can
then compute the final addresses of all symbols

* Once the final addresses are known, the static linker can apply
patches to instructions or data



Static Linking Hello World

* Target address of branch
instruction from main() in hello.o
patched to final address of
printf() imported from libc.a

e Global variables that contain

pointers must also be patched
(e.g. TAILQ_HEAD _INITIALIZER)

printf()

/7%

main()



Dynamic Linking

* When using shared libraries, some addresses are not known until run
time

* These addresses cannot be patched by the static linker in the linker
output file but are instead patched at run time by the run-time
loader in the in-memory copy of an output file

* For example, if the hello world example is linked dynamically, the
final address of printf() is not known until the shared C library is

loaded into the virtual memory of a process



Relocations

* The process of rearranging object file input sections in the static
linker relocates individual functions and global variables to new
addresses

* Static relocations are data structures generated by compilers and
assemblers to describe the patches required by object files and are
consumed by the static linker

* Dynamic relocations are similar data structures generated by the
static linker to describe patches required by linked output files and
are consumed by the run-time loader

* In ELF, both types of relocations use the same underlying data
structures



ELF Relocations

* ELF relocations contain fields that represent the following
* The target address (file offset) to be patched
* The type of relocation to perform
* The symbol the target is referring to (optional)
* An addend to add to the resolved address (optional)

* EIf _Rel does not include an explicit addend

 If an addend is used, it is stored in the target address (relocation is not
idempotent!)

* EIf _Rela does include an explicit addend



ELF Relocation Types

* Types are architecture-dependent

* Type specifies various properties of the relocation
e Address calculation formula
* How to store the result

* Some classes of relocation types

* Absolute address (R_*_ ABS*) (S + A)
* Address relative to the object’s base address (R_* RELATIVE) (B + A)

* Address relative to the current PC value (S+ A - P)

e https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table



https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table
https://riscv-non-isa.github.io/riscv-elf-psabi-doc/#reloc-table

Multi-Relocation Patches

* Some architectures (e.g.
AArch64 and RISC-V) use
multiple instructions to

construct an address Upper 20 bits of &f00
When assemblea o .o

return (&fo0);

e Each instruction needs its own

relocation lui a@, %hi(foo)
addi a@, a@, %lo(foo)
ret

Low 12 bits of &foo



Examining Relocations

* readelf -r: List of relocations by section

* objdump -r: List of static relocations by section

e objdump -R: List of dynamic relocations by section

* objdump -dr: Display static relocations inline with disassembly

» Compiler explorer: https://godbolt.org



https://godbolt.org/
https://godbolt.org/

Compiler Explorer: RISC-V Example

RISC-V rv64gc clang 20.1.0 -02 -fno-pic

extern int foo;

bar:
void *bar(void) lui a@, %hi(foo)
{ addi a0, a0, %lo(foo)
return (&foo); ret



Compiler Explorer: RISC-V Example

RISC-V rv64gc clang 20.1.0 -02 -fno-pic

- Compile to binary object

extern int foo;

bar:
void *bar(void) lui ae,exe
R_RISCV_HI20 foo
{ R_RISCV_RELAX *ABS*
return (&foo); v 20,20
) R_RISCV_L012_I foo

R_RISCV_RELAX *ABS*

ret



ELF Object File Code Generation

 Position-Dependent Executable (PDE)
* Static executables and libraries
* Dynamic executables
* -fno-pic

* Position-Independent Code (PIC)
e Shared libraries
» -fpic / -fPIC

 Position-Independent Executable (PIE)
* Static executables and libraries

* Dynamic executables
» -fpie / -fPIE



Evolution of ELF Object Files

* Static executables as the starting point / base case (PDE)

 Shared libraries built on top of this base
* Library object files compiled as PIC and linked into a .so
* Executable object files remain unchanged, but linked differently

* PIE added relatively recently

* Motivated by ASLR
* Run-time relocations like shared libraries

* "Optimized” PIC



PIC Mode Differences

 Shared libraries can be loaded at different addresses
* Symbols cannot be directly accessed at absolute addresses
* PC-relative access to objects within the same shared library are ok

* Global variables and functions might be defined in a different linked
output file

* Address of variables and functions are only known at run time by the run-
time loader



Accessing Globals in PIC

* Run-time loader could patch instructions directly similar to static
linker

* Prevents sharing underlying physical pages containing .text across multiple
processes

* Instead, variables and functions are accessed indirectly

e Static linker constructs an array of pointers known as a Global Offset Table
(GOT)

* Compiler generates code that reads pointers from GOT and dereferences
them to access data

e Static linker generates dynamic relocations describing how to populate GOT
entries that are handled by the run-time loader



Accessing Globals in PIC

21



Preemptible Symbols (1)

» “Remote” symbols (those not defined in the same linker output file)
must always be accessed indirectly via GOT entries in PIC mode

* Note that the compiler does not know which “remote” symbolsin a single
object file will end up “remote” in the final linker output file

* However, ELF also uses GOT indirection for some symbols defined in
the same linker output file
* Permits overriding malloc() and free() in libc via LD_PRELOAD as an example
e Symbols accessed via GOT indirection are preemptible symbols



Preemptible Symbols (2)

e ELF symbols have a visibility property in addition to binding (local vs
global)

» “default” global symbols are exported to other output files and are
preemptible at run time

* “hidden” global symbols are not exported to other output files and are not
preemptible

* Think of these as local symbols shared by multiple object files within a library or
executable

* “protected” global symbols are exported to other output files, but are not
preemptible within the containing output file



Calling Preemptible Functions in PIC

* The code generation for PIC could read function pointers from the
GOT and branch to them as indirect function calls similar to accessing
data variables via GOT indirection

e But ELF does not do that...

* Some libraries have many “remote” function calls, but individual processes
may only invoke a subset. However, processing all the dynamic relocations
for those GOT entries would add overhead in the run-time loader
initialization.

* PDE dynamic executables invoke “remote” functions, too



PLTs

e Static linker generates a Procedure Linkage Table (PLT) for calls to
remote functions

* Each preemptible function is associated with a stub function (or
“thunk”) in the PLT

e Each stub function reads a pointer from a separate PLT GOT (distinct
from the normal GOT and also generated by the static linker) and
branches to that pointer

* Each entry in the PLT is associated with a dynamic relocation

(typically R_<arch> JUMP_SLOT) whose symbol is the name of the
remote function and the target address is the PLT GOT entry



Lazy PLT Resolution (1)

* To avoid the overhead of processing jump slot relocations on startup,
PLT GOT entries are resolved on demand

* The first entry in the PLT is a special thunk, PLTO, which reads a
function pointer and an opaque data pointer from two entries at the
start of the PLT GOT and branches to the function pointer passing the
opague data pointer in a specific register

e PLT GOT entries are initialized so that on the first call, the PLT thunk
stores the index of the PLT entry in a specific register and branches to
the special PLTO thunk



Lazy PLT Resolution (2)

* The run-time loader initializes the two entries at the start of the PLT
GOT with code and data pointers

* For FreeBSD, the code pointer points to _rtld_bind_start() and the data
pointer points to the associated Obj_Entry

* When the run-time loader is called, it uses the PLT index to locate the
jump slot relocation and applies that relocation to update the PLT
GOT entry

* The resolved function pointer address is also branched to directly at
the end of the resolver routine



Lazy PLT Example

|d-elf.so.1
#include <stdio.h> _rtld_bind_start()
main()
int main(void)
{ obj_main
intf(“hello “); PLTO
pr%ntf(“ e 1:\ ) ; PLT
printf(“world\n™); printf@ plt
return 0;
} .
PLT GOT libc.so.7

printf()



PDE Data and Code Access (Static Binary / Library)

int bar(int *);
extern int Xx;
int

foo(void)

{
}

return bar(&x) + 4;

x86-64 gcc 14.2 -02 -fno-pic

foo:

subq
movl
call
addq
addl
ret

Absolute 32-bit
Address of “x”

$8 / %rsp
$x, %edi
bar

$8. %rsp
$4| *eax

32-bit PC-relative
Branch



PIC Data and Code Access (Shared Library)

int bar(int *);
extern int Xx;
int

foo(void)

{
}

return bar(&x) + 4;

x86-64 gcc

foo:

subq
movq
call
addq
addl
ret

A_A_~ 7~~~ LA~

Reads “&x” from GOT via
PC-relative Address

$8, %rsp

X@GOTPCREL (%rip), %rdi
bar@PLT

$8, %csp

$4, % x

PC-relative Branch
to PLT Stub



PDE Data and Code Access (Dynamic Binary)

int bar(int *);
extern int x;
int

foo(void)

{
}

return bar(&x) + 4;

X86-64 gcc 14.2 -02- £ mie

foo:

subq
movl
call
addq
addl
ret

What if “x” isin a
shared library?

$8 /%rsp
$x, %edi
bar

$8, %rsp
$4, %e X

What if “bar” is in
a shared library?



PDE Dynamic Executables

* Q: How to handle branches to external functions in shared libraries?

e A: PLT Stub
* Linker rewrites target of branch to address of PLT stub

* Q: How to handle absolute addresses for external data in shared
libraries?
* A: Copy Relocations
« Static linker reserves space in .bss of executable for a copy of x (x’)

* run-time loader copies value of x from shared library into x’
* run-time loader resolves symbol lookups for x to x” instead



Copy Relocations

Executable Shared
Library

GOT

33



PDE Function Pointer (Static Binary / Library)

#include <stdio.h>

void foo(void)

{
}

printf("fclose = %p\n", &fclose);

x86-64 gcc 14.2 -02 -fno-pie

.LCO:

foo:

Absolute
Addresses

.string "fclose< Z%p\n"

movl
movl
xorl
jmp

$fclose, %esi
$.LCO, %edi
%eax, %eax
printf

32-bit PC-relative
Branch



PIC Function Pointer (Shared Library)

#include <stdio.h>

void foo(void)

{
}

printf("fclose = %p\n", &fclose);

x86-64 gcc 14.2 -( Reads “&fclose” from GOT
via PC-relative Address

.LCo:
.string "fc/ se = %p\n"
foo:
movq fclose@GOTPCREL (%rip), %rsi
leaq .LCO(%rip), %rdi
xorl »eax, %eax
jmp printf@PLT

PC-relative Branch
to PLT Stub



PDE Function Pointer (Dynamic Binary)

#include <stdio.h>

void foo(void)

{
}

printf("fclose = %p\n", &fclose);

x86-64 gcc 14.2 -02

.LCO:

foo:

What absolute address
to use for “&fclose”?

.string "fclg = %p\n"
movl $fclose, %esi
movl $.LCO, %edi
xorl %eax, %eax

jmp

printf



Canonical PLT Entries

e Q: What absolute address (fixed at link time) can we use for an
external function pointer?

e A: Address of the PLT stub for that function in the executable.

* Q: How to handle C’s requirement that all function pointers to the
same function compare equal?

* A: All other data pointers to the function have to use the address of
the PLT stub in the executable.

* Copy Relocations for Function Pointers



Canonical PLT Entries

Executable
Stores Pointer in
PLT GOT
foo()
fclose@plt
PLT GOT &fclose

Stores Pointer in
GOT

libc

fclose()

&fclose

GOT

o)



What about PIE?

» -fPIE uses GOT indirection for data variables on clang (but not GCC!)
* No copy relocations for clang

* -fPIE uses GOT indirection for function pointers on both GCC and
clang

* No canonical PLT entries



PIE Data and Code Access (Dynamic Binary) - GCC

int bar(int *); x86-64 gcc 14.2 -02 -fPIE

extern int x;

int
foo(void) f00:
{
return bar(&x) + 4;
}

subq
leaqg
call
addq
addl
ret

PC-relative
address of “x”

$8, /rsp
x(%rip), %rdi
bar@PLT
$8,\%rsp

$4, | hax

PC-relative Branch
to PLT Stub



PIE Data and Code Access (Dynamic Binary) - clang

int bar(int *); x86-64 clang 19.1.0 -02 -fPIE

extern int x;

int
foo(void) f00:
{
return bar(&x) + 4;
}

pushq
movq
callq
addl
popq
retq

Identical to
-fPIC

%rax

X@GOTPCREL (%rip), %rdi
bar@PLT

$4, %eax

%»rcx



PIE Function Pointer (Dynamic Binary)

#include <stdio.h>

void foo(void)

{
}

printf("fclose = %p\n", &fclose);

x86-64 gcc 14.2 -02 —fPIE Identical to

.LCO:

foo:

-fPIC

.string "fclose = %p\n"

movq
leaq
xorl
jmp

fclose@GOTPCREL (%rip), %rsi
.LCO(%rip), %rdi

%eax, %eax

printf@PLT



Indirect Functions (IFUNC)

* Indirect functions permit resolving a symbol to the address of another
symbol at run time
 Typically used to provide optimized versions of functions (e.g. SSE2 vs AVX)

* The value of symbols of type STT_GNU _IFUNC is the address of a resolver
function

* The resolver function returns the resolved symbol value

* When resolving the address of an indirect function symbol, the run-time
loader calls the resolver function to obtain the final symbol value

* R_<arch>_IRELATIVE relocations are a relative relocation whose initial value
is also the address of a resolver function



Miscellaneous Notes

* Default code generation varies by compiler and architecture

* -fno-plt is a recent innovation to disable PLT indirection
* Function calls read from the GOT directly
* Some toolchain folks are advocating for GOT indirection for PDE

(-fno-pic) to eliminate copy relocations and canonical PLTs entirely

* Linker relaxations may be able to relax GOT indirection back to PDE-like direct
access at static link time

e Static libraries can contain PIC object files
e Useful as an input when linking a shared library



Guide to Relevant ELF File Sections

text

.data

.rodata

.bss
.rel[a].<section>
.got

.plt

.got.plt
.rel[a].dyn

.rel[a].plt

RN

SRS

SRS

Machine code

Writable global variables

Read-only global variables, constant pools

Writable global variables initialized to 0

Static ELF relocations

Data GOT

PLT stubs

PLT GOT

Dynamic ELF relocations for everything but PLT GOT

Dynamic ELF relocations for PLT GOT



MIPS

More reasons |
* MIPS is a special snowflake among ELF architectures dislike MIPS
* | think it suffered perhaps from being “first”

* No dynamic ELF relocations for the GOT, instead the single GOT is split into
separate regions with implicit rules for resolving GOT entries for each region
* “Local” region are all relative relocations without a symbol
(DT_MIPS _LOCAL GOTNO entries)

* “Global” region contains symbol addresses where the GOT entries are associated
with a contiguous range of indices in the symbol table (starting at
DT_MIPS_GOTSYM symbol index)

e PLT stubs use the end of the “Global” region (starting at DT_MIPS_SYMTABNO)

* Index passed to run-time loader’s resolver from PLT stubs is an index into the
symbol table

* GOT index is computed as DT_MIPS LOCAL GOTNO + (symbol index —
DT_MIPS_GOTSYM)



Resources

* Linkers and Loaders by John Levine
* Only book I'm aware of that talks about this topic...
e ... but it was published in 1999 while was an undergrad

* Compiler Explorer: https://godbolt.org

* MaskRay (LLVM developer)’s blog: https://maskray.me/blog/



https://godbolt.org/
https://maskray.me/blog/

	Slide 1: ELF Nightmares: GOTs, PLTs, and Relocations Oh My
	Slide 2: Overview
	Slide 3: The Problem: Mapping Symbols to Addresses
	Slide 4: A few definitions (1)
	Slide 5: A few definitions (2)
	Slide 6: The Problem: Refined
	Slide 7: Linking a Static Executable
	Slide 8: Static Linking Hello World
	Slide 9: Dynamic Linking
	Slide 10: Relocations
	Slide 11: ELF Relocations
	Slide 12: ELF Relocation Types
	Slide 13: Multi-Relocation Patches
	Slide 14: Examining Relocations
	Slide 15: Compiler Explorer: RISC-V Example
	Slide 16: Compiler Explorer: RISC-V Example
	Slide 17: ELF Object File Code Generation
	Slide 18: Evolution of ELF Object Files
	Slide 19: PIC Mode Differences
	Slide 20: Accessing Globals in PIC
	Slide 21: Accessing Globals in PIC
	Slide 22: Preemptible Symbols (1)
	Slide 23: Preemptible Symbols (2)
	Slide 24: Calling Preemptible Functions in PIC
	Slide 25: PLTs
	Slide 26: Lazy PLT Resolution (1)
	Slide 27: Lazy PLT Resolution (2)
	Slide 28: Lazy PLT Example
	Slide 29: PDE Data and Code Access (Static Binary / Library)
	Slide 30: PIC Data and Code Access (Shared Library)
	Slide 31: PDE Data and Code Access (Dynamic Binary)
	Slide 32: PDE Dynamic Executables
	Slide 33: Copy Relocations
	Slide 34: PDE Function Pointer (Static Binary / Library)
	Slide 35: PIC Function Pointer (Shared Library)
	Slide 36: PDE Function Pointer (Dynamic Binary)
	Slide 37: Canonical PLT Entries
	Slide 38: Canonical PLT Entries
	Slide 39: What about PIE?
	Slide 40: PIE Data and Code Access (Dynamic Binary) - GCC
	Slide 41: PIE Data and Code Access (Dynamic Binary) - clang
	Slide 42: PIE Function Pointer (Dynamic Binary)
	Slide 43: Indirect Functions (IFUNC)
	Slide 44: Miscellaneous Notes
	Slide 45: Guide to Relevant ELF File Sections
	Slide 46: MIPS
	Slide 47: Resources

