
CheriABI
Hardware enforced memory safety

for FreeBSD
Brooks Davis, Robert N. M. Watson, Alexander Richardson,

Peter G. Neumann, Simon W. Moore, John Baldwin, David Chisnall,
James Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joannou, Ben Laurie,

A. Theodore Markettos, J. Edward Maste, Alfredo Mazzinghi,
Edward Napierala, Robert Norton, Michael Roe, Peter Sewell, Stacey Son,

Jonathan Woodruff
SRI International, University of Cambridge, Microsoft Research, Google, Inc

1

Approved for public release; distribution is unlimited. This work was supported by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD”) and HR0011-
18-C-0016 (“ECATS”). The views, opinions, and/or findings contained in this report are those of the authors and should not
be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Punchline: it really does work

• Full FreeBSD operating system with spatial and
referential memory safety
•Covers programs, libraries, and linkers
•Kernel access to user memory

•Performance is generally acceptable
• Significant 3rd-party software works:

PostgreSQL database, Webkit

2

Introduction to CHERI

• CHERI introduces a new register type: the capability
• In addition to integer and floating point

• CHERI capabilities grant access to bounded regions of virtual
address space
• Protected by tags

Watson, et al. CHERI: a research platform deconflating
hardware virtualization and protection. RESoLVE 2012.
Woodruff, et al. The CHERI capability model: Revisiting RISC
in an age of risk. ISCA 2014.

3

Architectural CHERI capabilities

4

virtual address (64 bits)

Allocation

Virtual
address
space

25
6-

bi
t

ca
pa

bi
lit

y

length (64 bits)
address (64 bits)

base (64 bits)

permissions (31 bits)

Architectural CHERI capabilities extend pointers with:

• Tags protect capabilities in registers and memory

• Bounds limit range of address space accessible via a pointer

• Permissions limit operations – e.g., load, store, instruction fetch

v1-
bi

t
ta

g

128-bit compressed capabilities

5

12
8-

bi
t

ca
pa

bi
lit

y

Virtual
address
space

v1-
bi

t
ta

g
permissions compressed bounds relative to address

address (64 bits)

• Compress bounds relative to 64-bit virtual address
• Floating-point bounds mechanism constrains bounds alignment
• Security properties maintained (e.g., provenance, monotonicity)

• Strong C-language support (e.g., for out-of-bound pointers)

• DRAM tag density from 0.4% to 0.8% of physical memory size
• Full prototype with full software stack on FPGA
• Implications for memory allocators, object alignment, etc

Allocation

CHERI memory operation

•All memory access via CHERI capabilities
•Explicit (new instructions):
•Capability load, store, branch, jump

• Implicit (legacy MIPS ISA):
•via Default Data Capability (DDC) or Program
Counter Capability (PCC)

6

CHERI capability manipulation

•Capabilities are used and manipulated in capability
registers with capability instructions
•Manipulations are monotonic (can only reduce

bounds and permissions)
•CAndPerm cd, cb, rt
•CSetAddr cd, cs, rs

•Capabilities can be stored in memory, protected by
tags
• Non-capability stores clear tags

7

Capabilities as C pointers
• CHERI capabilities are designed for use as C pointers
• Allowed to be out of bounds between dereferences
• Can store 64-bit integers (untagged)
• No protection tables or privileged operations

• Two compilation modes:
• Hybrid: __capability annotation applied to select

pointers
• Pure-capability: all pointers are capabilities

Chisnall, et al. Beyond the PDP-11: Processor support for a
memory-safe C abstract machine. ASPLOS 2015.

8

CheriABI: Pure-capability process environment

• Built on CheriBSD (FreeBSD modified for CHERI)
• All program pointers are capabilities
• Including syscall arguments and return values

• Goal: Bounds are minimized
• C-language objects
• Pointers provided by the kernel

• Goal: run pure-capability programs with simple recompilation
Watson, et al. CHERI: A Hybrid Capability-System Architecture for Scalable
Software Compartmentalization. Oakland 2015.
Chisnall, et al. CHERI-JNI: Sinking the Java security model into the C.
ASPLOS 2017.

9

Implementation: kernel
• CheriABI is implemented as a compat layer (i.e. freebsd32)
• The kernel is a hybrid CHERI-C program
• Pointers to userspace are annotated with __capability and are

capabilities.
• Select data structures (e.g. struct iovec, signal bits) converted to store

capabilities.

• All userspace access via capabilities
• Capability aware versions of userspace access functions:
copyin_c/copyout_c/fueword_c, etc
• Non “_c” verisons return error for CheriABI processes
• Capabilities not copied to/from userspace by default

• Special copyincap/copyoutcap used to ensure copy is intentional

10

Implementation: userspace

•Libraries live in /usr/libcheri
•Built before programs

•Programs can compile and link as legacy, hybrid,
or pure-capability
•Almost-full support for external LLVM toolchain
for mips64

11

Abstract capabilities

How should the systems programmer think about
bounds?

New concept: abstract capability
• Set of permissions of the process
• Tracks ghost state across swapping, etc
•Constructed and maintained by a collaboration of the

kernel and language runtime

12

System startup

13

RWX 0x0 - 0xFF…FFDDC
RWX 0x0 - 0xFF…FFPCC

NULLC1-31

All tags clear

Power-on state
Re

gi
st

er
s

M
em

or
y

RW- 0x0 - 0xFF…FFDDC
R-X 0x0 - 0xFF…FFPCC

Working setC1-31

RWX 0x0-0x0000007F…FFUserRoot
RWX 0x0 - 0xFF…FFSwapRoot

Early boot

Execve

14

Initial register values

Kernel

Userspace
Thread Stack

Process
arguments

Program binary

NULL DDC
RWX PCC
RW-CSP
RW-C03

auxargs

argv
environ

Arg & environ
strings

Run-time linker

RWX 0x0-0x0000007F…FFUserRoot

Virtual-memory system

•Programmer visible:
•Provides capabilities to newly mapped regions via
mmap() and shmat()
•Alters and frees mappings

•Abstract capability maintenance:
• Ensures correct virtual to physical mappings
•Preserves stored capabilities in swapped pages

15

Virtual-memory system: mmap

•mmap() allocates virtual address space and changes
mappings
• In CheriABI returns a bounded pointer
• Imprecise mapping requests rejected
•User must round-up unpresentable requests

•Permissions are set based on page permissions
•PROT_MAX() extension allows PROT_NONE

mappings for reservation

16

Virtual-memory system: swap

17

Kernel

Userspace

`

User page

RW- 0x… - 0x…Cap1

R-- 0x… - 0x…
Cap2

…Tag bitmap

Tag-free storage

User page

RW- 0x… - 0x…Cap1

R-- 0x… - 0x…
Cap2

RWX 0x0 - 0xFF…FFSwapRoot

Run-time linker

•Loads and links dynamic libraries
•Resolves symbols and synthesizes capabilities
• Jumps to program entry point

•Provides on-demand loading of libraries and
supports exception handling

18

C runtime

•Objects allocated by malloc() are bounded to
requested size
•realloc() adjusts bounds or allocates new storage
• Thread-local storage is bounded
•Currently to per-thread storage

•Compiler generated code sets bounds on stack,
automatic, and global objects as required

19

System calls

20

Kernel

Userspace
Thread Stack

buffer

read(fd, buffer, nbyte);

TCB

fda0

nbytea1
RW- bufferc3

SYS_READv0 copyout(kaddr, buffer, len);
…
kern_readv(td, fd, {buffer, nbyte});
cheriabi_read(td, uap);

Kernel code changes: read()
int user_read(struct thread *td, int fd, void * __capability buf,

size_t nbyte)
{

struct uio auio;
kiovec_t aiov;
if (nbyte > IOSIZE_MAX)

return (EINVAL);
IOVEC_INIT_C(&aiov, buf, nbyte);
auio.uio_iov = &aiov;
…
return (kern_readv(td, fd, &auio));

}

21

Called by sys_read() and
cheriabi_read()

New init macro for struct iovec

Required changes: pointer alignment

22

5.4 Memory protection benefit 29

label_done:
if (metadata_thp_madvise()) {

/* Set NOHUGEPAGE after unmap to avoid kernel defrag
. */

- assert(((uintptr_t)addr & HUGEPAGE_MASK) == 0 &&
+ assert(__builtin_is_aligned(addr, HUGEPAGE) &&

(size & HUGEPAGE_MASK) == 0);
pages_nohuge(addr, size);

}

Listing 3: An example of pointer alignment from JEmalloc

The calling convention (CC) for pure-capability code differs from the MIPS ABI: integer
and pointer arguments use different register files, and variadic arguments are always spilled to
the stack and passed via a capability. These require correct function prototypes to ensure that
values are passed as expected and that we handle variadic arguments directly. The implemen-
tation of system calls, including open and syscall, and a callback API in SunRPC, depends
on the overlap in calling conventions on existing architectures. For system calls other than
syscall, we handle the ‘optional’ argument as a variadic argument in the C library. In the
SunRPC case, programs declare their own callbacks; thus, fixing each one is the only possible
solution. The variadic calling convention has allowed us to find numerous bugs, but it does
pose compatibility issues. We have added warnings defaulting to errors when calling func-
tions without declared arguments,14 or converting between variadic and non-variadic function
pointers.

The unsupported (U) label covers an array of things CHERI or CheriABI does not support
– including XOR on pointers and the sbrk system call.

5.4 Memory protection benefit
To evaluate memory safety, we used the BOdiagsuite suite of 291 programs from Kratkiewicz [27]
and used by Hardbound [18]. These were intended for testing static analysis tools, but are also
useful for dynamic enforcement. The test suite consists of an assortment of C bounds viola-
tions, a small number of which use POSIX APIs such as getcwd with an incorrect length.

Each program has one variant with no memory-safety errors, and three variants that contain
bugs (shown as the column heads in Table 4).

• min has the smallest possible memory safety violation (typically off by one byte);

• med has an off-by-8-bytes error; and

• large has an off-by-4096-bytes error.

14Unlike -Wstrict-prototypes this warning also allows calls to legacy K&R declarations as long as the
declaration with the argument types is visible at the call site. We allow these calls since this style of C function
declarations is still very common throughout the FreeBSD source tree.

Required changes: pointer provenance

23

28 5 EVALUATION

if ((nstrings = realloc(we->we_strings, we->we_nbytes)) ==
NULL) {

error = WRDE_NOSPACE;
goto cleanup;

}
for (i = 0; i < vofs; i++)

- if (we->we_wordv[i] != NULL)
- we->we_wordv[i] += nstrings - we->we_strings

;
+ if (we->we_wordv[i] != NULL) {
+ we->we_wordv[i] = nstrings +
+ (we->we_wordv[i] - we->we_strings);
+ }

we->we_strings = nstrings;

Listing 1: Typical example of a pointer provenance bug. Here array of strings is extended
with realloc and the pointers are updated. The old code updated the old pointers rather than
deriving new pointers. This example is from lib/libc/gen/wordexp.c.

*/
-#define __UNCONST(a) ((void *)(unsigned long)(const void *)(a))
+#if !__has_feature(capabilities)
+#define __UNCONST(a) ((void *)(__uintptr_t)(const void *)(a))
+#else
+#define __UNCONST(a) ((void *)(__uintcap_t)(const void *

__capability)(a))
+#endif

Listing 2: Example of an integer provenance change, casting through intptr_t or
intcap_t as appropriate when removing const in a macro. This change was made in
lib/libnetbsd/sys/cdefs.h.

address space.
Pointer as integer (I) covers storing sentinel integers or integer data in pointers (e.g.,

MAP_FAILED is (void *)-1).
There are a number of issues related to manipulating pointers as virtual addresses (VA).

Several are sufficiently common that we have broken them out: Bit flags (BF) refers to storing
flags (e.g., lock status) in the low bits of pointers. Hashing (H) means computing a hash from
a virtual address. Alignment (A) counts adjusting the alignment of a pointer (e.g., rounding up
a (char *) to permit storing a pointer) as seen in listing 3. We have added compiler warnings
for bitwise math and remainder operations on capabilities. Additionally, we have created a new
compiler mode and a supporting CGetAddr instruction in which casts of pointers to integers
produce the virtual address (rather than the offset used in prior work). For this paper, we
compile CheriBSD in the old mode, but have switched the default to use this mode – based on
our experience. This new mode would obviate many of our changes.

Required changes: summary
• Userspace: 1% (~200) of files required changes
• Concentrated in libraries
• Most programs require no changes

• Kernel: <6% of files (~750) required changes
• Pervasive changes to iovec, signal handlers, network

interface ioctl handlers
• A pure-capability kernel could reduce changes

•Many changes improve code quality
• We have upstreamed many to FreeBSD (compat32

improvements, etc)

24

25

Capability bounds minimization (OpenSSL)

22 25 28 211 214 217 220 223

Size

0

20000

40000

60000

80000

100000

120000

N
um

be
r

of
ca

pa
bi

lit
ie

s

all

stack

malloc

exec

glob relocs syscall kern

Most capabilities
bound small regions

(<<1page)

Stack references

Small number
of whole

shared-object
references
remain in

startup code

Better

Performance

26

se
cu

rit
y-
sh
a

o�
ce
-s
tri
ng

se
ar
ch

au
to
-q
so
rt

au
to
-b
as
icm

at
h

ne
tw

or
k-
di
jk
st
ra

ne
tw

or
k-
pa

tri
cia

te
lco

-a
dp

cm
-e
nc

te
lco

-a
dp

cm
-d
ec

sp
ec
20

06
-g
ob

m
k

sp
ec
20

06
-li
bq

ua
nt
um

sp
ec
20

06
-a
st
ar

sp
ec
20

06
-x
al
an

cb
m
k

in
itd

b-
dy

na
m
ic

-10
+0

+10
+20
+30
+40
+50
+60
+70
+80 instructions cycles l2cache misses

• Micro-benchmark performance generally acceptable

• <10% overhead in most cases

• Graph excludes crypto and bit-manipulation outliers

Reflections on using FreeBSD for CheriABI
• Good:
• Well-abstracted process ABI infrastructure

• SysV stack ABI somewhat baked in
• Central, generated system call tables, stubs, etc
• Single, hackable build system

• Bad
• Centralized copyin/copyout for ioctl divorces copy from types
• Tests require ports/packages (kyua)

• No easy way to build kyua static

27

Work in progress

•Porting ISA from MIPS64 to RISC-V
•New compressed capability format
•Temporal memory safety
•Make CheriABI the default ABI
•Add a compat/freebsd64

•Pure-capability kernel

28

Future work on FreeBSD

•More compatX cleanup
• Code deduplication
• Remove separate syscalls.master

• Rework ioctl interface
• Konrad Witaszczyk (def@) is working in this area

• Refactor use of initial stack for arguments
• Needed for CheriABI, likely helpful for ASLR

• Upstream CHERI/CheriABI support
• Hardware platform required, but hopefully coming

29

Conclusions

• Full UNIX-like operating system with spatial and
referential memory safety
•Covers programs, libraries, and linkers
•Kernel access to user memory

• Some fundamental operating system changes required
•Generally non-disruptive

•3rd-party software works:
PostgreSQL database, Webkit

30

Further Reading

http://cheri-cpu.org/
Watson, et al., Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 7), Technical Report UCAM-CL-TR-927,
Computer Laboratory, Cambridge UK, October 2018.
Davis, et al., CheriABI: Enforcing Valid Pointer Provenance and Minimizing
Pointer Privilege in the POSIX C Run-time Environment (Extended Version),
Technical Report UCAM-CL-TR-932, Computer Laboratory, Cambridge UK,
January 2019.
Woodruff, et al., CHERI Concentrate: Practical Compressed Capabilities, IEEE
Transactions on Computers, (forthcoming).

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Approved for public release. Distribution is unlimited.

31

