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Punchline: it really does work

* Full FreeBSD operating system with spatial and
referential memory safety

* Covers programs, libraries, and linkers
* Kernel access to user memory

* Performance is generally acceptable

e Significant 3"9-party software works:
PostgreSQL database, Webkit
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Introduction to CHERI

* CHERI introduces a new register type: the capability
* In addition to integer and floating point

* CHERI capabilities grant access to bounded regions of virtual
address space

* Protected by tags

Watson, et al. CHERI: a research platform deconflating
hardware virtualization and protection. RESoLVE 2012.

Woodruff, et al. The CHERI capability model: Revisiting RISC
in an age of risk. ISCA 2014.
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Architectural CHERI capabilities
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Architectural CHERI capabilities extend pointers with: g [flocaton
* Tags protect capabilities in registers and memory
* Bounds limit range of address space accessible via a pointer
« Permissions limit operations — e.g., load, store, instruction fetch ;g;trueils
space
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128-bit compressed capabilities
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* Compress bounds relative to 64-bit virtual address

* Floating-point bounds mechanism constrains bounds alighment
Allocation

e Security properties maintained (e.g., provenance, monotonicity) — ®_Z_ZZ_IL

e Strong C-language support (e.g., for out-of-bound pointers)

* DRAM tag density from 0.4% to 0.8% of physical memory size

Virtual
address
space

* Full prototype with full software stack on FPGA

* Implications for memory allocators, object alignment, etc
FEC AT <
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CHERI memory operation

* All memory access via CHERI capabilities
*Explicit (new instructions):
* Capability load, store, branch, jump
*Implicit (legacy MIPS ISA):
*via Default Data Capability (DDC) or Program
Counter Capability (PCC)
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CHERI capability manipulation

* Capabilities are used and manipulated in capability
registers with capability instructions

* Manipulations are monotonic (can only reduce
bounds and permissions)

e CAndPerm cd, cb, rt
eCSetAddr cd, cs, rs
* Capabilities can be stored in memory, protected by
tags
* Non-capability stores clear tags
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Capabilities as C pointers

* CHERI capabilities are designed for use as C pointers
* Allowed to be out of bounds between dereferences
e Can store 64-bit integers (untagged)
* No protection tables or privileged operations

* Two compilation modes:

* Hybrid:  capability annotation applied to select
pointers

* Pure-capability: all pointers are capabilities

Chisnall, et al. Beyond the PDP-11: Processor support for a
memory-safe C abstract machine. ASPLOS 2015.
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CheriABI: Pure-capability process environment

* Built on CheriBSD (FreeBSD modified for CHERI)

* All program pointers are capabilities
* Including syscall arguments and return values
* Goal: Bounds are minimized
* C-language objects
* Pointers provided by the kernel
* Goal: run pure-capability programs with simple recompilation

Watson, et al. CHERI: A Hybrid Capability-System Architecture for Scalable
Software Compartmentalization. Oakland 2015.

Chisnall, et al. CHERI-JNI: Sinking the Java security model into the C.
ASPLOS 2017.
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Implementation: kernel

* CheriABI is implemented as a compat layer (i.e. freebsd32)
* The kernel is a hybrid CHERI-C program

* Pointers to userspace are annotated with __capability andare
capabilities.
e Select data structures (e.g. struct iovec, signal bits) converted to store
capabilities.
* All userspace access via capabilities

» Capability aware versions of userspace access functions:
copyin_c/copyout c/fueword c, etc

* Non “_c” verisons return error for CheriABI processes

 Capabilities not copied to/from userspace by default
» Special copyincap/copyoutcap used to ensure copy is intentional
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Implementation: userspace

e Libraries live in /usr/libcheri
*Built before programs
*Programs can compile and link as legacy, hybrid,
or pure-capability
* Almost-full support for external LLVM toolchain
for mips64
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Abstract capabilities

How should the systems programmer think about
bounds?

New concept: abstract capability
* Set of permissions of the process
* Tracks ghost state across swapping, etc

* Constructed and maintained by a collaboration of the
kernel and language runtime
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System startup

Power-on state Early boot

» DDC | RWX ©x0 - OXFF..FF DDC | RW- ©x0 - OXFF..FF

.% PCC | RWX ©x0 - OXFF..FF PCC | R-X 0x0 - OXFF..FF

g c1-31 NULL 1-31 Working set
UserRoot | RWX 0x0-0x0000007F..FF

> SwapRoot | RWX ©x0 - OXFF..FF

@)

GEJ All tags clear

p=
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Execve

Initial register values UserRoot | RWX Ox0-0x0000007F..FF
DDC NULL
PCC | RWX
CSP | RW-
Kernel €03 | RW-
Userspace
Thread Stack
| Program binary
Process Run-time linker \
arguments
auxargs '
environ
argv
o ——— >
| Arg & environ ! -
i strings ! |
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Virtual-memory system

* Programmer visible:

* Provides capabilities to newly mapped regions via
mmap () and shmat()

* Alters and frees mappings

* Abstract capability maintenance:
* Ensures correct virtual to physical mappings
* Preserves stored capabilities in swapped pages
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Virtual-memory system: mmap

* mmap() allocates virtual address space and changes
mappings
* In CheriABI returns a bounded pointer
* Imprecise mapping requests rejected
* User must round-up unpresentable requests

* Permissions are set based on page permissions

* PROT_MAX() extension allows PROT_NONE
mappings for reservation
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Virtual-memory system: swap

Tag bitmap :I:.

SwapRoot | RWX 0x0 - OxFF..FF

Tag-free storag

Kernel
Userspace _______I""~""""¥
User page User page
Capl | RW- Ox.. - Ox.. Capl | RW- Ox.. - Ox..
Cap2 . Cap2
R-- Ox.. - OX.. R-- Ox.. - OXx..
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Run-time linker

*Loads and links dynamic libraries
* Resolves symbols and synthesizes capabilities

* Jumps to program entry point

* Provides on-demand loading of libraries and
supports exception handling
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C runtime

* Objects allocated by malloc () are bounded to
requested size

*realloc() adjusts bounds or allocates new storage

* Thread-local storage is bounded
* Currently to per-thread storage

* Compiler generated code sets bounds on stack,
automatic, and global objects as required
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System calls

\V{%)
ao
c3
al
Kernel
Userspace
buffer

read(fd, buffer, nbyte);

TCB \\\
SYS_READ
fd
RW- buffer
nbyte

Thread Stack
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copyout(kaddr, buffer, len);

kern_readv

cheriabi d(td, uap);

Lt

e
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fd, {buffer, nbyte});
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Kernel code changes: read()

int user_read(struct thread *td, int fd, void * _ capability buf,
size t nbyTe€

{ Called by sys_read() and
struct uio auio; cheriabi_read()
kiovec t aiov;
if (nbyte > IOSIZE_ MAX)

return (EINVAL);
IOVEC_INIT C(&aiov, buf, nbyte);
aulo.ulo_iov = &alov; New init macro for struct iovec
return (kern_readv(td, fd, &auio));

}
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Required changes: pointer alignment

label done:
1f (metadata_thp_madvise()) {
/* Set NOHUGEPAGE after unmap to avoid kernel defrag
. x/
- assert (((uintptr_t)addr & HUGEPAGE_MASK) == 0 &é&
+ assert (_ _builtin_is_aligned (addr, HUGEPAGE) &&
(size & HUGEPAGE_MASK) == 0);
pages_nohuge (addr, size);
}
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Required changes: pointer provenance

FFC AT

i1f ((nstrings = realloc(we—>we_strings, we—->we_nbytes)) ==
NULL) {
error = WRDE_NOSPACE;
goto cleanup;
}
for (1 = 0; 1 < vofs; 1i++)
- 1f (we—-—>we_wordv[i] != NULL)
= we—->we_wordv[1i] += nstrings - we—->we_strings
’
+ if (we—-—>we_wordv[i] != NULL) {
+ we—>we_wordv[i1] = nstrings +
+ (we—>we_wordv[1] - we—->we_strings);
+ }
we—->we_strings = nstrings;
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Required changes: summary

e Userspace: 1% (~200) of files required changes
* Concentrated in libraries
* Most programs require no changes

* Kernel: <6% of files (~750) required changes

 Pervasive changes to 1ovec, signal handlers, network
interface 1octl handlers

* A pure-capability kernel could reduce changes

* Many changes improve code quality

* We have upstreamed many to FreeBSD (compat32
improvements, etc)
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Capability bounds minimization (OpenSSL)
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Performance
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* Micro-benchmark performance generally acceptable
e <10% overhead in most cases

* Graph excludes crypto and bit-manipulation outliers
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Reflections on using FreeBSD for CheriABI

 Good:

* Well-abstracted process ABI infrastructure
» SysV stack ABI somewhat baked in

* Central, generated system call tables, stubs, etc
* Single, hackable build system

e Bad

 Centralized copyin/copyout for ioctl divorces copy from types

* Tests require ports/packages (kyua)
* No easy way to build kyua static

5 B UNIVERSITY OF
» CAMBRIDGE

FFC AT




Work in progress

* Porting ISA from MIPS64 to RISC-V
* New compressed capability format

* Temporal memory safety

* Make CheriABI the default ABI
* Add a compat/freebsd64

* Pure-capability kernel
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Future work on FreeBSD

* More compatX cleanup

* Code deduplication
* Remove separate syscalls.master

* Rework ioctl interface
* Konrad Witaszczyk (def@) is working in this area

e Refactor use of initial stack for arguments
* Needed for CheriABI, likely helpful for ASLR

* Upstream CHERI/CheriABI support
* Hardware platform required, but hopefully coming
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Conclusions

* Full UNIX-like operating system with spatial and
referential memory safety

* Covers programs, libraries, and linkers
* Kernel access to user memory

* Some fundamental operating system changes required
* Generally non-disruptive

* 3"9-party software works:
PostgreSQL database, Webkit
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Further Reading

http://cheri-cpu.org/

Watson, et al., Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 7), Technical Report UCAM-CL-TR-927,
Computer Laboratory, Cambridge UK, October 2018.

Davis, et al., CheriABI: Enforcing Valid Pointer Provenance and Minimizing
Pointer Privilege in the POSIX C Run-time Environment (Extended Version),
Technical Report UCAM-CL-TR-932, Computer Laboratory, Cambridge UK,

January 2019.

Woodruff, et al., CHERI Concentrate: Practical Compressed Capabilities, |IEEE
Transactions on Computers, (forthcoming).
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