CheriABI

Hardware enforced memory safety
for FreeBSD

Brooks Davis, Robert N. M. Watson, Alexander Richardson,
Peter G. Neumann, Simon W. Moore, John Baldwin, David Chisnall,
James Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joannou, Ben Laurie,
A. Theodore Markettos, J. Edward Maste, Alfredo Mazzinghi,
Edward Napierala, Robert Norton, Michael Roe, Peter Sewell, Stacey Son,
Jonathan Woodruff

SRI International, University of Cambridge, Microsoft Research, Google, Inc

Approved for public release; distribution is unlimited. This work was supported by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD”) and HR0011-
18-C-0016 (“ECATS”). The views, opinions, and/or findings contained in this report are those of the authors and should not
be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

FFC AT

B UNIVERSITY OF
CAMBRIDGE

Punchline: it really does work

* Full FreeBSD operating system with spatial and
referential memory safety

* Covers programs, libraries, and linkers
* Kernel access to user memory

* Performance is generally acceptable

e Significant 3"9-party software works:
PostgreSQL database, Webkit

ﬁ 5 B UNIVERSITY OF
misy) P CAMBRIDGE

FFC AT

Introduction to CHERI

* CHERI introduces a new register type: the capability
* In addition to integer and floating point

* CHERI capabilities grant access to bounded regions of virtual
address space

* Protected by tags

Watson, et al. CHERI: a research platform deconflating
hardware virtualization and protection. RESoLVE 2012.

Woodruff, et al. The CHERI capability model: Revisiting RISC
in an age of risk. ISCA 2014.

5 B UNIVERSITY OF
» CAMBRIDGE

FFC AT

Architectural CHERI capabilities

1-bit
tag
-
<

- 2
s =
© ®
N o
AN @©
O
_ N‘NNN
Architectural CHERI capabilities extend pointers with: g [flocaton
* Tags protect capabilities in registers and memory
* Bounds limit range of address space accessible via a pointer
« Permissions limit operations — e.g., load, store, instruction fetch ;g;trueils
space

...l.n UNIVERSITY OF
4% CAMBRIDGE

FFC AT

128-bit compressed capabilities

lﬁ m
o)
LS
= = |
S = m compressed bounds relative to address
0= L ey
AN O 0
<& address(e4bits)
(@)

* Compress bounds relative to 64-bit virtual address

* Floating-point bounds mechanism constrains bounds alighment
Allocation

e Security properties maintained (e.g., provenance, monotonicity) — ®_Z_ZZ_IL

e Strong C-language support (e.g., for out-of-bound pointers)

* DRAM tag density from 0.4% to 0.8% of physical memory size

Virtual
address
space

* Full prototype with full software stack on FPGA

* Implications for memory allocators, object alignment, etc
FEC AT <

5B UNIVERSITY OF
¢» CAMBRIDGE

CHERI memory operation

* All memory access via CHERI capabilities
*Explicit (new instructions):
* Capability load, store, branch, jump
*Implicit (legacy MIPS ISA):
*via Default Data Capability (DDC) or Program
Counter Capability (PCC)

ﬁ 5 B UNIVERSITY OF
emsions) QP CAMBRIDGE

FFC AT

CHERI capability manipulation

* Capabilities are used and manipulated in capability
registers with capability instructions

* Manipulations are monotonic (can only reduce
bounds and permissions)

e CAndPerm cd, cb, rt
eCSetAddr cd, cs, rs
* Capabilities can be stored in memory, protected by
tags
* Non-capability stores clear tags

B UNIVERSITY OF

EC AT < ¥ CAMBRIDGE

Capabilities as C pointers

* CHERI capabilities are designed for use as C pointers
* Allowed to be out of bounds between dereferences
e Can store 64-bit integers (untagged)
* No protection tables or privileged operations

* Two compilation modes:

* Hybrid: capability annotation applied to select
pointers

* Pure-capability: all pointers are capabilities

Chisnall, et al. Beyond the PDP-11: Processor support for a
memory-safe C abstract machine. ASPLOS 2015.

B UNIVERSITY OF

C AT < 4P CAMBRIDGE

CheriABI: Pure-capability process environment

* Built on CheriBSD (FreeBSD modified for CHERI)

* All program pointers are capabilities
* Including syscall arguments and return values
* Goal: Bounds are minimized
* C-language objects
* Pointers provided by the kernel
* Goal: run pure-capability programs with simple recompilation

Watson, et al. CHERI: A Hybrid Capability-System Architecture for Scalable
Software Compartmentalization. Oakland 2015.

Chisnall, et al. CHERI-JNI: Sinking the Java security model into the C.
ASPLOS 2017.

5 B UNIVERSITY OF
» CAMBRIDGE

FFC AT

Implementation: kernel

* CheriABI is implemented as a compat layer (i.e. freebsd32)
* The kernel is a hybrid CHERI-C program

* Pointers to userspace are annotated with __capability andare
capabilities.
e Select data structures (e.g. struct iovec, signal bits) converted to store
capabilities.
* All userspace access via capabilities

» Capability aware versions of userspace access functions:
copyin_c/copyout c/fueword c, etc

* Non “_c” verisons return error for CheriABI processes

 Capabilities not copied to/from userspace by default
» Special copyincap/copyoutcap used to ensure copy is intentional

& B UNIVERSITY OF

ECA I — 3y CAMBRIDGE

Implementation: userspace

e Libraries live in /usr/libcheri
*Built before programs
*Programs can compile and link as legacy, hybrid,
or pure-capability
* Almost-full support for external LLVM toolchain
for mips64

ﬁ 5 B UNIVERSITY OF
misy) P CAMBRIDGE

FFC AT

Abstract capabilities

How should the systems programmer think about
bounds?

New concept: abstract capability
* Set of permissions of the process
* Tracks ghost state across swapping, etc

* Constructed and maintained by a collaboration of the
kernel and language runtime

ﬁ 5 B UNIVERSITY OF
misy) P CAMBRIDGE

FFC AT

System startup

Power-on state Early boot

» DDC | RWX ©x0 - OXFF..FF DDC | RW- ©x0 - OXFF..FF

.% PCC | RWX ©x0 - OXFF..FF PCC | R-X 0x0 - OXFF..FF

g c1-31 NULL 1-31 Working set
UserRoot | RWX 0x0-0x0000007F..FF

> SwapRoot | RWX ©x0 - OXFF..FF

@)

GEJ All tags clear

p=

B UNIVERSITY OF
CAMBRIDGE

FFC AT

Execve

Initial register values UserRoot | RWX Ox0-0x0000007F..FF
DDC NULL
PCC | RWX
CSP | RW-
Kernel €03 | RW-
Userspace
Thread Stack
| Program binary
Process Run-time linker \
arguments
auxargs '
environ
argv
o ——— >
| Arg & environ ! -
i strings ! |

5 B UNIVERSITY OF
4P CAMBRIDGE

Virtual-memory system

* Programmer visible:

* Provides capabilities to newly mapped regions via
mmap () and shmat()

* Alters and frees mappings

* Abstract capability maintenance:
* Ensures correct virtual to physical mappings
* Preserves stored capabilities in swapped pages

B UNIVERSITY OF

EC AT < ¥ CAMBRIDGE

Virtual-memory system: mmap

* mmap() allocates virtual address space and changes
mappings
* In CheriABI returns a bounded pointer
* Imprecise mapping requests rejected
* User must round-up unpresentable requests

* Permissions are set based on page permissions

* PROT_MAX() extension allows PROT_NONE
mappings for reservation

B UNIVERSITY OF

EEEC AT < =) ¢ ¥ CAMBRIDGE

Virtual-memory system: swap

Tag bitmap :I:.

SwapRoot | RWX 0x0 - OxFF..FF

Tag-free storag

Kernel
Userspace _______I""~""""¥
User page User page
Capl | RW- Ox.. - Ox.. Capl | RW- Ox.. - Ox..
Cap2 . Cap2
R-- Ox.. - OX.. R-- Ox.. - OXx..

FFC AT

5 B UNIVERSITY OF
49 CAMBRIDGE

Run-time linker

*Loads and links dynamic libraries
* Resolves symbols and synthesizes capabilities

* Jumps to program entry point

* Provides on-demand loading of libraries and
supports exception handling

ﬁ 5 B UNIVERSITY OF
misy) P CAMBRIDGE

FFC AT

C runtime

* Objects allocated by malloc () are bounded to
requested size

*realloc() adjusts bounds or allocates new storage

* Thread-local storage is bounded
* Currently to per-thread storage

* Compiler generated code sets bounds on stack,
automatic, and global objects as required

5 B UNIVERSITY OF
» CAMBRIDGE

FFC AT

System calls

\V{%)
ao
c3
al
Kernel
Userspace
buffer

read(fd, buffer, nbyte);

TCB \\\
SYS_READ
fd
RW- buffer
nbyte

Thread Stack

FFC AT

copyout(kaddr, buffer, len);

kern_readv

cheriabi d(td, uap);

Lt

e
C LA NN SN ! 57
N

fd, {buffer, nbyte});

A UNIVERSITY OF

CAMBRIDGE

Kernel code changes: read()

int user_read(struct thread *td, int fd, void * _ capability buf,
size t nbyTe€

{ Called by sys_read() and
struct uio auio; cheriabi_read()
kiovec t aiov;
if (nbyte > IOSIZE_ MAX)

return (EINVAL);
IOVEC_INIT C(&aiov, buf, nbyte);
aulo.ulo_iov = &alov; New init macro for struct iovec
return (kern_readv(td, fd, &auio));

}

5 B UNIVERSITY OF
4P CAMBRIDGE

FFC AT

Required changes: pointer alignment

label done:
1f (metadata_thp_madvise()) {
/* Set NOHUGEPAGE after unmap to avoid kernel defrag
. x/
- assert (((uintptr_t)addr & HUGEPAGE_MASK) == 0 &é&
+ assert (_ _builtin_is_aligned (addr, HUGEPAGE) &&
(size & HUGEPAGE_MASK) == 0);
pages_nohuge (addr, size);
}

B UNIVERSITY OF
CAMBRIDGE

FFC AT

Required changes: pointer provenance

FFC AT

i1f ((nstrings = realloc(we—>we_strings, we—->we_nbytes)) ==
NULL) {
error = WRDE_NOSPACE;
goto cleanup;
}
for (1 = 0; 1 < vofs; 1i++)
- 1f (we—-—>we_wordv[i] != NULL)
= we—->we_wordv[1i] += nstrings - we—->we_strings
’
+ if (we—-—>we_wordv[i] != NULL) {
+ we—>we_wordv[i1] = nstrings +
+ (we—>we_wordv[1] - we—->we_strings);
+ }
we—->we_strings = nstrings;

B UNIVERSITY OF

CAMBRIDGE

Required changes: summary

e Userspace: 1% (~200) of files required changes
* Concentrated in libraries
* Most programs require no changes

* Kernel: <6% of files (~750) required changes

 Pervasive changes to 1ovec, signal handlers, network
interface 1octl handlers

* A pure-capability kernel could reduce changes

* Many changes improve code quality

* We have upstreamed many to FreeBSD (compat32
improvements, etc)

5 B UNIVERSITY OF
» CAMBRIDGE

FFC AT

Capability bounds minimization (OpenSSL)

N ol malloc WSl glob relocs syscall kern
stalk exec
12000 - \Hr—
Most capabilities
100100 P bound small regions /Small number\
" S
9 Q‘@, (<<1page) of wholg
= 90001 /| shared-object
'§ references
O remain in
= (0000
o startup code
3 \ %
E 44000 /\
=
2000+ \
Stack references]
0% 211 214 217 220 223
Size

BB UNIVERSITY OF
4% CAMBRIDGE

Performance

+80 TZZA instructions cycles K8 12cache misses

+70 -
+60 -
+50 -
+40 -
+30 -
+20 - $
SRR AN e i A
-10 - ZINDS RSN 2NN H N
x° ,?;@Q S o . &2 ;\O'b ,«zf‘o ,b"’o ~o‘°\{- N 4@‘ \0«5‘\{- &
& < & < N & & & o 3 o © N
& «© & S < & % ¥ 3 $ & S
/ " o o < (8] & Q &
g{\\O@ 'b\) (\é' (\é' &e}o &éo G)Q@ q/QQ R (.}Q <&
° Qe'o eQe
2

* Micro-benchmark performance generally acceptable
e <10% overhead in most cases

* Graph excludes crypto and bit-manipulation outliers

BB UNIVERSITY OF
4% CAMBRIDGE

FFC AT

Reflections on using FreeBSD for CheriABI

 Good:

* Well-abstracted process ABI infrastructure
» SysV stack ABI somewhat baked in

* Central, generated system call tables, stubs, etc
* Single, hackable build system

e Bad

 Centralized copyin/copyout for ioctl divorces copy from types

* Tests require ports/packages (kyua)
* No easy way to build kyua static

5 B UNIVERSITY OF
» CAMBRIDGE

FFC AT

Work in progress

* Porting ISA from MIPS64 to RISC-V
* New compressed capability format

* Temporal memory safety

* Make CheriABI the default ABI
* Add a compat/freebsd64

* Pure-capability kernel

B UNIVERSITY OF

EC AT < ¥ CAMBRIDGE

Future work on FreeBSD

* More compatX cleanup

* Code deduplication
* Remove separate syscalls.master

* Rework ioctl interface
* Konrad Witaszczyk (def@) is working in this area

e Refactor use of initial stack for arguments
* Needed for CheriABI, likely helpful for ASLR

* Upstream CHERI/CheriABI support
* Hardware platform required, but hopefully coming

5 B UNIVERSITY OF
» CAMBRIDGE

FFC AT

Conclusions

* Full UNIX-like operating system with spatial and
referential memory safety

* Covers programs, libraries, and linkers
* Kernel access to user memory

* Some fundamental operating system changes required
* Generally non-disruptive

* 3"9-party software works:
PostgreSQL database, Webkit

B UNIVERSITY OF

= AT < 4¥ CAMBRIDGE

Further Reading

http://cheri-cpu.org/

Watson, et al., Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 7), Technical Report UCAM-CL-TR-927,
Computer Laboratory, Cambridge UK, October 2018.

Davis, et al., CheriABI: Enforcing Valid Pointer Provenance and Minimizing
Pointer Privilege in the POSIX C Run-time Environment (Extended Version),
Technical Report UCAM-CL-TR-932, Computer Laboratory, Cambridge UK,

January 2019.

Woodruff, et al., CHERI Concentrate: Practical Compressed Capabilities, |IEEE
Transactions on Computers, (forthcoming).

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.
Approved for public release. Distribution is unlimited.

5 B UNIVERSITY OF
» CAMBRIDGE

FFC AT

