
© 2018 BlackBerry. All Rights Reserved. 1© 2019 BlackBerry. All Rights Reserved. 1Confidential – Internal Use Only

Virtualization of BSD
Using the QNX Hypervisor

Quentin Garnier

Senior Kernel Developer
qgarnier@blackberry.com

May 2019

mailto:qgarnier@blackberry.com

© 2018 BlackBerry. All Rights Reserved. 2© 2019 BlackBerry. All Rights Reserved. 2Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 22

• The virtualization environment: QNX Neutrino and QNX Hypervisor

• Goals for the exercise

• Stories from the trenches

Agenda

© 2018 BlackBerry. All Rights Reserved. 3© 2019 BlackBerry. All Rights Reserved. 3Confidential – Internal Use Only

QNX Host Environment

© 2018 BlackBerry. All Rights Reserved. 4© 2019 BlackBerry. All Rights Reserved. 4Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 44

• Some vocabulary:
● Host system
● Virtualization manager (qvm)
● Virtual machine
● Guest system

• What the host system provides:
● Virtualization manager
● Drivers for possible shared hardware resources
● Anything else the system designer wants to have

About the QNX Hypervisor design (1/2)

© 2018 BlackBerry. All Rights Reserved. 5© 2019 BlackBerry. All Rights Reserved. 5Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 55

About the QNX Hypervisor design (2/2)

QNX Neutrino
microkernel (procnto)

Devices

Hardware (Aarch64, x86-64)

App 1 ... App n

Guest OS (QNX)

BSP

qvm process

Drivers

Virtual
devices

Drivers

App 1 ... App n

Guest OS (Linux)

qvm process

Drivers

Virtual
devices

Hypervisor
Hypervisor module (libmod_qvm.a)

Message handler
threads

Shared

Private
memory

Pass-through

Emulated
Shared

Emulated

© 2018 BlackBerry. All Rights Reserved. 6© 2019 BlackBerry. All Rights Reserved. 6Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 66

• Targeting QNX guests and Linux guests
● This is what the industry wants

• The Hypervisor runs as a process in the host system, with virtual
CPUs being scheduled as normal threads

● A special privilege elevation interface allows running guest code

• Minimal environment, therefore no or minimal virtual firmware
● For instance, no emulated BIOS whatsoever on x86_64

A few design choices for the Hypervisor (1/2)

© 2018 BlackBerry. All Rights Reserved. 7© 2019 BlackBerry. All Rights Reserved. 7Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 77

• Minimal environment, therefore no or minimal virtual firmware
● QNX on x86 is booted through Multiboot
● Linux/x86_64 has its own protected-mode loading protocol

• How does time flow in a guest?
● It’s complicated...

A few design choices for the Hypervisor (2/2)

© 2018 BlackBerry. All Rights Reserved. 8© 2019 BlackBerry. All Rights Reserved. 8Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 88

• As little emulated hardware as possible
● It’s not just about being lazy: emulation is slow

• Customers either pass-through hardware or use VirtIO devices

Virtual Machines

© 2018 BlackBerry. All Rights Reserved. 9© 2019 BlackBerry. All Rights Reserved. 9Confidential – Internal Use Only

Goals

© 2018 BlackBerry. All Rights Reserved. 10© 2019 BlackBerry. All Rights Reserved. 10Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 1010

• Emulation gaps
● Comes from focusing on a very limited number of guests

• Finding actual bugs
● Same cause, but it means better coverage of the existing code

• QNX is cool, hypervisors are cool, BSDs are cool.

Why am I doing this?

© 2018 BlackBerry. All Rights Reserved. 11© 2019 BlackBerry. All Rights Reserved. 11Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 1111

• Get a multi-user prompt
● I’ll settle for some dmesg excitement

• Find bugs in our Hypervisor, possibly in the guests
● It’s all a matter of point of view!

• Look at performance if time permits

Objectives with BSD guests

© 2018 BlackBerry. All Rights Reserved. 12© 2019 BlackBerry. All Rights Reserved. 12Confidential – Internal Use Only

Guest Experience

© 2018 BlackBerry. All Rights Reserved. 13© 2019 BlackBerry. All Rights Reserved. 13Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 1313

• The easiest to start with:
● Very familiar with the x86 Hypervisor code
● Quite familiar with NetBSD internals
● build.sh – other BSDs, take note!

Booting NetBSD/amd64

© 2018 BlackBerry. All Rights Reserved. 14© 2019 BlackBerry. All Rights Reserved. 14Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 1414

• Not just about NetBSD/amd64

• While NetBSD/i386 can be booted through Multiboot, NetBSD/amd64
has it own protocol

• Frustrating because:
● It starts in protected mode
● It wants the same data it would get through Multiboot, just in a slightly

different format

The bootloader problem

© 2018 BlackBerry. All Rights Reserved. 15© 2019 BlackBerry. All Rights Reserved. 15Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 1515

• A module to load NetBSD kernels

• Emulation of MSR 0x10 (IA32_TIME_STAMP_COUNTER)
● In our Hypervisor, MSRs that are not passed-through or emulated

result in an exception
● This is an emulation gap

Work needed to get NetBSD/amd64 booting (1/3)

© 2018 BlackBerry. All Rights Reserved. 16© 2019 BlackBerry. All Rights Reserved. 16Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 1616

• NetBSD doesn’t handle not having MTRRs
● MTRRs are not emulated because it’s a lot of work and not really

used these days
● However, the Linux kernel ties the support of MTRRs to its ability

to use the PAT

• Handling REP OUTS correctly
● Long debugging session

Work needed to get NetBSD/amd64 booting (2/3)

© 2018 BlackBerry. All Rights Reserved. 17© 2019 BlackBerry. All Rights Reserved. 17Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 1717

• A small workaround for the virtio-block driver
● size_max is a 32-bit unsigned

• The DSDT always exposes a PCI bridge, but it’s only created if there
is a PCI device in the virtual machine

● NetBSD would crash trying to access the non-existent PCI host
controller

Work needed to get NetBSD/amd64 booting (3/3)

© 2018 BlackBerry. All Rights Reserved. 18© 2019 BlackBerry. All Rights Reserved. 18Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 1818

• It wants to start in long mode, and has its own set of data structures
to pass memory information and command line

• Sorry, FreeBSD folks, I skip
● Already done the data structure spelunking for NetBSD, and I’d

have to write even more code to start a guest in long mode
● Neither are terribly difficult, and the long mode environment could

be a time saver booting Linux in the future

• Also, having to install FreeBSD somewhere just so I can recompile a
kernel is frustrating

Booting FreeBSD/x86_64

© 2018 BlackBerry. All Rights Reserved. 19© 2019 BlackBerry. All Rights Reserved. 19Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 1919

• OpenBSD was interesting in addition to NetBSD because it has its own
implementation of the ACPI OSPM

• The boot protocol to get the OpenBSD kernel running is very similar to
NetBSD, but everything is just slightly different.

• The only problem was comprobe1() which compares the value read
from IIR to 0x38 and thinks that it means the receive buffer is not
empty.

● I haven’t seen any 8250 documentation that would indicate that
● 0x20 actually means a 64-byte FIFO on the 16750
● 0x38 was there in revision 1.1 in NetBSD, I didn’t go any further in

history

Booting OpenBSD/amd64

© 2018 BlackBerry. All Rights Reserved. 20© 2019 BlackBerry. All Rights Reserved. 20Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 2020

• It seems the FreeBSD/aarch64 kernel wants an EFI loader

• I couldn’t figure out an easy way to get an EFI environment
● The Linaro EFI build for the Foundation Model expects to have code

running at EL3, which is not something we ever consider emulating
● U-Boot might be an option to investigate more in the future

• Another skip, but I’m not biased against FreeBSD, okay?

Booting FreeBSD/aarch64

© 2018 BlackBerry. All Rights Reserved. 21© 2019 BlackBerry. All Rights Reserved. 21Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 2121

• NetBSD/aarch64’s locore.S is easier to read, it can work with only the
pointer to the FDT in x0

• The QNX Hypervisor emulates (or pretends to) the Foundation Model,
but there’s no code handling it among all the ARM_PLATFORM
definitions

• NetBSD’s pl011 driver disables the transmit FIFO, which exposed a
bug in our emulation

Booting NetBSD/aarch64

© 2018 BlackBerry. All Rights Reserved. 22© 2019 BlackBerry. All Rights Reserved. 22Confidential – Internal Use Only

What’s next?

© 2018 BlackBerry. All Rights Reserved. 23© 2019 BlackBerry. All Rights Reserved. 23Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 2323

• NetBSD/amd64 seems sluggish during boot
● i8254_delay() is expensive, especially because of the way time flows

in our Hypervisor

• There’s a long pause in both OpenBSD and NetBSD on amd64
● It seems to be because of the minimal emulation of the 8042

Performance considerations

© 2018 BlackBerry. All Rights Reserved. 24© 2019 BlackBerry. All Rights Reserved. 24Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 2424

• Get a FreeBSD to boot

• Create guest images for our test team
● The number of problems found proved it was a worthy experiment

Maybe for next time

© 2018 BlackBerry. All Rights Reserved. 25© 2019 BlackBerry. All Rights Reserved. 25Confidential – Internal Use Only

©2019 BlackBerry Limited. Trademarks, including but not limited to BLACKBERRY, BBM, BES, EMBLEM Design, ATHOC and SECUSMART are the trademarks or registered trademarks of BlackBerry Limited, its subsidiaries and/or
affiliates, used under license, and the exclusive rights to such trademarks are expressly reserved. All other trademarks are the property of their respective owners. iPad and iPhone are trademarks of Apple, Inc., registered in the U.S. and
other countries. Android is a trademark of Google Inc. The Android robot is reproduced or modified from work created and shared by Google and used according to terms described in the Creative Commons 3.0 Attribution License. Windows
is a registered trademark of Microsoft Corporation in the United States and other countries. BlackBerry is a trademark of Research In Motion Limited.

Questions

qgarnier@blackberry.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

