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• The virtualization environment: QNX Neutrino and QNX Hypervisor

• Goals for the exercise

• Stories from the trenches

Agenda 
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QNX Host Environment
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• Some vocabulary:
● Host system
● Virtualization manager (qvm)
● Virtual machine
● Guest system

• What the host system provides:
● Virtualization manager
● Drivers for possible shared hardware resources
● Anything else the system designer wants to have

About the QNX Hypervisor design (1/2)
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About the QNX Hypervisor design (2/2)
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• Targeting QNX guests and Linux guests
● This is what the industry wants

• The Hypervisor runs as a process in the host system, with virtual 
CPUs being scheduled as normal threads

● A special privilege elevation interface allows running guest code

• Minimal environment, therefore no or minimal virtual firmware
● For instance, no emulated BIOS whatsoever on x86_64

A few design choices for the Hypervisor (1/2) 
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• Minimal environment, therefore no or minimal virtual firmware
● QNX on x86 is booted through Multiboot
● Linux/x86_64 has its own protected-mode loading protocol

• How does time flow in a guest?
● It’s complicated...

A few design choices for the Hypervisor (2/2) 
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• As little emulated hardware as possible
● It’s not just about being lazy: emulation is slow

• Customers either pass-through hardware or use VirtIO devices

Virtual Machines 
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Goals
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• Emulation gaps
● Comes from focusing on a very limited number of guests

• Finding actual bugs
● Same cause, but it means better coverage of the existing code

• QNX is cool, hypervisors are cool, BSDs are cool.

Why am I doing this? 
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• Get a multi-user prompt
● I’ll settle for some dmesg excitement

• Find bugs in our Hypervisor, possibly in the guests
● It’s all a matter of point of view!

• Look at performance if time permits

Objectives with BSD guests



© 2018 BlackBerry. All Rights Reserved. 12© 2019 BlackBerry. All Rights Reserved. 12Confidential – Internal Use Only

Guest Experience
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• The easiest to start with:
● Very familiar with the x86 Hypervisor code
● Quite familiar with NetBSD internals
● build.sh – other BSDs, take note!

Booting NetBSD/amd64 
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• Not just about NetBSD/amd64

• While NetBSD/i386 can be booted through Multiboot, NetBSD/amd64 
has it own protocol

• Frustrating because:
● It starts in protected mode
● It wants the same data it would get through Multiboot, just in a slightly 

different format

The bootloader problem 
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• A module to load NetBSD kernels

• Emulation of MSR 0x10 (IA32_TIME_STAMP_COUNTER)
● In our Hypervisor, MSRs that are not passed-through or emulated 

result in  an exception
● This is an emulation gap

Work needed to get NetBSD/amd64 booting (1/3)
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• NetBSD doesn’t handle not having MTRRs
● MTRRs are not emulated because it’s a lot of work and not really 

used these days
● However, the Linux kernel ties the support of MTRRs to its ability 

to use the PAT

• Handling REP OUTS correctly
● Long debugging session

Work needed to get NetBSD/amd64 booting (2/3)
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• A small workaround for the virtio-block driver
● size_max is a 32-bit unsigned

• The DSDT always exposes a PCI bridge, but it’s only created if there 
is a PCI device in the virtual machine

● NetBSD would crash trying to access the non-existent PCI host 
controller

Work needed to get NetBSD/amd64 booting (3/3)



© 2018 BlackBerry. All Rights Reserved. 18© 2019 BlackBerry. All Rights Reserved. 18Confidential – Internal Use Only © 2018 BlackBerry. All Rights Reserved. 1818

• It wants to start in long mode, and has its own set of data structures 
to pass memory information and command line

• Sorry, FreeBSD folks, I skip
● Already done the data structure spelunking for NetBSD, and I’d 

have to write even more code to start a guest in long mode
● Neither are terribly difficult, and the long mode environment could 

be a time saver booting Linux in the future

• Also, having to install FreeBSD somewhere just so I can recompile a 
kernel is frustrating

Booting FreeBSD/x86_64 
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• OpenBSD was interesting in addition to NetBSD because it has its own 
implementation of the ACPI OSPM

• The boot protocol to get the OpenBSD kernel running is very similar to 
NetBSD, but everything is just slightly different.

• The only problem was comprobe1() which compares the value read 
from IIR to 0x38 and thinks that it means the receive buffer is not 
empty.

● I haven’t seen any 8250 documentation that would indicate that
● 0x20 actually means a 64-byte FIFO on the 16750
● 0x38 was there in revision 1.1 in NetBSD, I didn’t go any further in 

history

Booting OpenBSD/amd64
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• It seems the FreeBSD/aarch64 kernel wants an EFI loader

• I couldn’t figure out an easy way to get an EFI environment
● The Linaro EFI build for the Foundation Model expects to have code 

running at EL3, which is not something we ever consider emulating
● U-Boot might be an option to investigate more in the future

• Another skip, but I’m not biased against FreeBSD, okay?

Booting FreeBSD/aarch64
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• NetBSD/aarch64’s locore.S is easier to read, it can work with only the 
pointer to the FDT in x0

• The QNX Hypervisor emulates (or pretends to) the Foundation Model, 
but there’s no code handling it among all the ARM_PLATFORM 
definitions

• NetBSD’s pl011 driver disables the transmit FIFO, which exposed a 
bug in our emulation

Booting NetBSD/aarch64 
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What’s next?
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• NetBSD/amd64 seems sluggish during boot
● i8254_delay() is expensive, especially because of the way time flows 

in our Hypervisor

• There’s a long pause in both OpenBSD and NetBSD on amd64
● It seems to be because of the minimal emulation of the 8042

Performance considerations 
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• Get a FreeBSD to boot

• Create guest images for our test team
● The number of problems found proved it was a worthy experiment

Maybe for next time  
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Questions

qgarnier@blackberry.com
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