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Secure Boot 101
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● Purpose - allow only authenticated FW and OS to run

● Defense against rootkits, persistent malware, etc.

● Chain of Trust - each boot image verifies the next, and so on

● Pass execution to next boot image only it verifies OK

● First boot image is immutable (in ROM) - inherently trusted



Secure Boot 101
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● First image (BootROM) is Root of Trust for the Secure Boot chain

● Root of Trust public key - needs to be protected from modification

● RoT key often burned in fuses, OTP, or ROM (or TPM)
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Source: https://uefi.org/sites/default/files/resources/UEFI_Spec_2_7.pdf



Copyright © 2019 Semihalf. All rights reserved. 

Source: https://uefi.org/sites/default/files/resources/UEFI_Spec_2_7.pdf
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Secure Boot in UEFI
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● UEFI uses Microsoft’s PE/COFF format for binaries

● PKCS#7 formatted signatures are embedded in the binary

● This format is supported by very few cryptographic libraries.

● The most common open source UEFI implementation - 

EDK2 is compiled with OpenSSL

Source: https://uefi.org/sites/default/files/resources/UEFI_Spec_2_7.pdf
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Source: https://uefi.org/sites/default/files/resources/UEFI_Spec_2_7.pdf



Secure Boot in UEFI
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Crucial UEFI variables:

● DB - Database of allowed certificates (for verification)

● DBx - Database of forbidden certificates

● PK - Platform Key, highest at key hierarchy

● KEK - Key Exchange Key, updates to KEK must be signed with PK

● DB/DBx updates must be signed with KEK or PK

● Possibility to whitelist/blacklist specific firmware hashes (no certs)
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Veriexec
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● Juniper created veriexec for Junos OS.

● Available in FreeBSD HEAD since February’19.

● It uses a manifest as a database of trusted components.

● Prevents executing untrusted kernel, binaries, scripts

● Integrity check hooks at execve and other critical points



Veriexec manifest
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● Single file composed of entries in path + hash form.

● All of these are loaded into a metadata store, using path as key.

● When a file is loaded, search for its hash in the store.

● If an entry is found and corresponding hash doesn’t match - fail.

● There are different policies for loading kernel

and other files (eg. config files) when no entry is found.



Verifying the manifest
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● Broken chain of trust!
● How to verify the manifest itself?



Verifying the manifest
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● Manifest file stored together with its signature

● Trusted public keys may be embedded in the loader

● But we could use UEFI trust anchors for manifest verification

● Loader has access to DB/DBX UEFI variables

● We picked BearSSL - lightweight crypto library to use in the loader

● Library with all the verification API - libsecureboot

● Still, embedded data may be used for systems without UEFI
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TPM in FreeBSD
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● TPM 1.2 driver added in FreeBSD 8.2 (bsssd project)

● TPM 2.0 driver added by Semihalf in Dec 2018

● CRB and FIFO (TIS) modes supported

● LPC bus only (no I2C/SPI support)

● Tested with Infineon SLB9665 TPM



TPM overview
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● Trusted Platform Module - a specification by TCG
● Versatile, low-cost HSM device
● Usually a dedicated hardware chip
● Ensures integrity (trustworthiness) of a platform

● Features:
○ - Measured Boot
○ - secure storage (with authorization)
○ - secure key generation
○ - HW RNG
○ - crypto operations (slow!) - RSA, ECC, AES, SHA, HMAC



TPM history
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● v1.1 (2003) - now deprecated
● v1.2 (2005-2009)

○ - anonymous attestation (DAA)
○ - anti-hammering (prevent dictionary attacks)
○ - limited crypto (SHA-1 only, RSA-2096, no ECC, AES optional)

● v2.0 (2014-2018)
○ - algorithm agility (only max key/hash length defined)
○ - Enhanced Authorization - complex object access rules
○ - not backwards compatible!



Firmware TPM
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● fTPM - TPM implemented in firmware
● Must run in TEE to make sense (ARM TrustZone, SGX)
● Used in millions of mobile devices with TrustZone
● Much faster than discrete TPM - runs on main CPU
● fTPM also in Intel ME, AMD PSP (check your BIOS)



TPM use cases
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● Not just for enterprise!
● Remote attestation - proof of platform/boot integrity

○ (somewhat) proves system is rootkit-free
● 2FA, smart card (GPG) - sign with key embedded in TPM

○ private key never leaves the TPM
● IPSEC VPN hardening - sign IKE payloads with TPM
● MS Bitlocker / LUKS key storage (no GELI support yet..)

○ anti-hammering - TPM locks down on failed attempts
● Securely store root certificates/keys (prevent modification)
● HWRNG entropy for the OS (early boot, embedded systems)



TPM authorization
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● Enhanced Authorization in TPM 2.0 allows complex rules
● Each NVRAM object has separate access rules
● Combine multiple rules with AND/OR
● Authorization policies:

○ Password
○ PIN
○ HMAC
○ PCR state (platform/boot integrity)
○ physical presence (press key, assert pin, access BIOS)
○ counters, time limits



TPM caveats
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● Anonymity concerns - mostly fixed with TPM 1.2 attestation (DAA)
● DRM concerns - Trusted Computing in general (SGX, Intel ME)
● Discrete TPMs are slow
● Different pinout/pin pitch configurations
● Complex, hard to read spec - 2 versions
● Poor SW support, especially for 2.0
● Hard to use correctly:

○ Bus encryption optional (need PSK)
○ ACPI reset vulnerabilities (PCRs cleared)
○ Need to update TPM FW manually (do it!)
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Measured Boot
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● Machine state represented by PCRs - Platform Configuration Registers 

containing cryptographic hashes.

● PCRs can be updated (“Extend” operation) by supplying another hash, 

but no direct modification is allowed.

● newPCR = HASH(oldPCR || dataToExtend)

● PCRs can only be reset by hardware reset (important)

Source: https://link.springer.com/book/10.1007%2F978-1-4302-6584-9



Measured Boot
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● Use PCRs to measure critical components, and if the resulting hashes 

are incorrect take appropriate action.

● Inconvenient for management - updating measured part of the system 

forces a change in the verification software.

● On the other hand, Secure Boot only requires user to sign the updated 

component.
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Measured Boot
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● On each measurement UEFI updates an event log with object names 

(file paths) and digests used for the Extend operation.

● One can later compare the log entries against a database of expected 

values.

● Software can replay the extend operations and confirm log authenticity 

against signed PCR values. (Quote operation)



Measured Boot
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● Currently FreeBSD can’t extend PCRs on its own.

● UEFI measures every binary before passing execution to it - boot1.efi 

and loader.efi are included in measurements already.

● Loader could be extended to measure kernel and modules too
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Strongswan
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● Strongswan is an open source multiplatform IPSEC implementation.

● Tunnels can be established using Internet Key Exchange(IKE) protocol.

● Authentication can be based on certificates or PSK. (Pre-shared key)

● In this case authentication payload is signed with private part of the key 

bound to certificate.
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Strongswan - IKE

private key

Signing request with 
proper authentication Encrypted digest

TPM



Prerequisites
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● TPM 2.0 FreeBSD driver

● IBM TSS, a userspace library that can “talk” to the TPM.

● Only a small, one-line patch is needed to make it build on FreeBSD.

● Our patch has not yet been merged on IBM TSS Sourceforge.

● Strongswan patched to work with IBM TSS - pull request is up on 

Github.



Strongswan
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● Strongswan can use private keys stored inside a TPM.

● That key is bound with a certificate to be used during IKE.

● Access protected with a passphrase, either be stored in clear text in 

configuration file or prompted for.

● Private keys are not leaked even if machine is compromised.

● A discrete TPM is slow, on Infineon SLB9655 signing takes ~0.15s using 

RSA2048 key.



Strongswan
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● An excerpt from swanctl config file that links a private key from TPM with 
a certificate.
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