Improving security of the FreeBSD boot process

Kornel Duleba, Michal Stanek
Semihalf

mindal@semihalf.com, mst@semihalf.com

Abstract

This paper describes recent security addi-
tions in the FreeBSD boot process.

TPM 2.0 devices are now supported in
FreeBSD. They are most often referred to in the
context of Measured Boot, i.e. secure measure-
ments and attestation of all images in the boot
chain. The TPM 2.0 specification defines versa-
tile HSM devices which can also strengthen se-
curity of various other parts of your system. We
describe the basic features of TPM 2.0 which
we have made available in FreeBSD. We also
mention some caveats and shortcomings of the
technology which may have contributed to the
limited adoption of TPMs.

The article includes practical TPM use
cases such as hardening Strongswan IPSec tun-
nels by performing IKE-related cryptographic
operations within the TPM, using private keys
which never leave the chip. Another example
will be sealing secrets in TPM NVRAM with
specific boot measurements (hashes) stored in
PCR registers so that the secrets are locked in
to a specific boot chain.

Furthermore, we describe our recent work
on UEFT Secure Boot support in the FreeBSD
loader and kernel. The loader is now able to
parse UEFT databases of keys and certificates
which are used to verify a signed FreeBSD ker-
nel binary, using BearSSL as the cryptographic
backend. In addition, we employ FreeBSD ver-
iexec capability to verify various userland bina-
ries and configuration files. We have extended
veriexec with the ability to use UEFI trust an-
chors as base for veriexec manifest verification.

1 Introduction

There are several concepts which can im-
prove security of the FreeBSD boot process.
Measured Boot may be employed by using a
hardware device called TPM (Trusted Platform
Module) to make measurements of the code ex-
ecuted at startup and verify its integrity. An-
other, similar technology is UEFI Secure Boot,
which makes use of cryptographic certificates
stored in UEFI bootloader to authenticate the
image being loaded at each step of the boot
process.

After the system has booted, there may
be a need for verified execution i.e. authen-
ticating binaries and configuration files being
loaded at runtime. Veriexec is a kernel com-
ponent which provides such guarantees by per-
forming file integrity checks during certain sys-
tem calls such as open and exec. This ensures
that an active adversary has not modified crit-
ical system files.

In this paper we present our work on TPM
2.0 support in FreeBSD, as well as integration
of UEFI Secure Boot with Veriexec to allow
authentication of the loader, kernel, modules
and sensitive system files. We also describe
several TPM features which may be used by
FreeBSD userspace software for secure compu-
tation and storage. Finally, we discuss open is-
sues concerning the current implementation of
the above technologies in FreeBSD, while list-
ing possible ways of improving it in the future.

2 TPM overview

TPM (Trusted Platform Module) is a
technology specified by Trusted Computing

Group which allows systems to validate basic
boot properties, such as the integrity of the
boot images executed at startup. TPMs are
usually discrete hardware components which
provide secure storage and secure crypto-
graphic computation. They may be classified as
HSMs (Hardware Security Module) or as a lim-
ited TEE (Trusted Execution Environment).
There have been two major versions of TPM
specification - 1.2 and 2.0. Version 1.2 has been
supported in FreeBSD since 2010. Version 2.0
is not backwards-compatible with 1.2 and intro-
duces numerous improvements over the initial
specification. We created and merged a driver
for TPM 2.0 at the end of Decemberl'l. Com-
bined with IBM TSS library[?!, which provides
a software APT to user applications, nearly all
TPM features can now be used in FreeBSD.

TPM is most commonly used for Mea-
sured Boot. During system startup, each im-
age which takes part in the boot chain mea-
sures (hashes) the next image before passing
execution to it. The resulting hash is saved to
a PCR register in the TPM. Apart from binary
images, various other data can be included in
the measurements - for example EFI environ-
mental variables. The PCR registers can only
be reset by firmware or during reboot. Write
operation to PCR does not replace the hash
value but only extends it. The TPM takes the
new hash measurement, concatenates it with
the current PCR value and stores the hash of
the concatenation in the PCR. This way a hash
chain is formed which serves as proof of a par-
ticular chain of boot images, loaded in a partic-
ular sequence. As a result, the OS may query
the PCR value from the TPM and compare it to
a known good hash which represents the desired
system state. On mismatch, the OS finds out
that some of the boot code was modified and
may take appropriate action. In addition, an
event log is created. It contains a list of names
of hashed objects and their fingerprints. One
can compare the digests against expected val-
ues and replay the process of extending PCRs
to verify the log integrity.

Another TPM feature strictly linked to
Measured Boot is attestation. A remote server

may request measurements of the local plat-
form as proof that the system can be trusted,
before providing up keys, secrets or other in-
formation. This is achieved with the Quote op-
eration, which consists of the TPM signing its
PCR values along with a nonce provided by the
requester to prevent replay attacks. The TPM
signs the PCRs using a private key embedded in
the chip which is unavailable to software. Sev-
eral key types are supported such as RSA and
ECC.

The measurements are normally made
by both the firmware and OS. Depending on
UEFT implementation usually all loaded bina-
ries (*.efi files) and some variables are mea-
sured. Currently the FreeBSD loader and
kernel do not support the extend operation,
however depending on UEFI implementation,
bootl.efi and loader.efi may be measured.
There is currently no possibility to read the
event log associated with the measurements
in FreeBSD. Userspace software may, however,
request signed PCR measurements from the
TPM, which were made by UEFI.

3 TPM usage in FreeBSD

Apart of Measured Boot image measure-
ments, there are several interesting features of
the TPM which can be used in FreeBSD:

e Strongswan IPSEC

Strongswan is a multiplatform IPsec VPN
implementation available in FreeBSD. It
offers optional secure storage of private
keys and certificates on smartcards and
TPMs. We have created patches for
Strongswan which enable FreeBSD users
to take advantage of the TPM plugin to
secure their VPN networks. We describe
an example Strongswan configuration us-
ing TPM in later sections.

e Secure NVRAM storage

TPMs typically contain limited NVRAM
memory in the order of several kilobytes for
storing secrets and other data. NVRAM

data in the TPM may be locked to a spe-
cific password, pin code or a specific set of
PCR values. Some operating systems sup-
port storing disk encryption keys in TPM
NVRAM. Common examples are Bitlocker
and LUKS. FreeBSD GELI does not sup-
port storing encryption keys in the TPM.

e Data sealing

The TPM offers a Seal operation which al-
lows encryption of arbitrary user data by
the TPM using embedded symmetric keys.
The data may also be sealed to a partic-
ular set of PCR values. Note that TPM
cryptographic operations are usually much
slower than software. Therefore, for large
data it is best to use the TPM to seal a
symmetric key which may then be kept on
vulnerable storage in encrypted form and
later used to decrypt the actual user data
in software.

e SSH key storage

It is possible to store SSH private keys
in the TPM NVRAM. A third-party li-
brary is required which works as a PKCS11
provider. We did not evaluate this option.

4 TPM limitations and caveats

One of the biggest shortcomings of dis-
crete TPM chips is their performance, espe-
cially regarding asymmetric cryptography. In
case of Infineon SLB9665 the operation of
signing SHA256 digest with a RSA-2048 key
takes approximately 0.15s. TPMs are not sup-
posed to be cryptographic accelerators. Bet-
ter performance may be achieved with a non-
discrete TPM implementation. As an example,
fTPM 2.0 is available as part of Intel Manage-
ment Engine in 54+ gen processors. Another
firmware implementation of TPM was created
by Microsoft®l. It leverages ARM TrustZone
and is used in all ARM mobile devices running
Windows.

Another limitation is the size of NVRAM
storage. Usually it is in the order of several
kilobytes, which is hardly enough to store a few

RSA keys. Infineon SLB9665 contains exactly
7206 bytes of NVRAM.

Since the TPM 2.0 specification was intro-
duced fairly recently, some of the software inter-
acting with it may still lack important features.
For example IBM TSS library lacks support
for encrypted communication with the TPM,
a feature that is defined in the specification.
Also, there is no in-tree support for TPM in
OpenSSL.

Most. TPM implementations are closed-
source with limited public information avail-
able on the specifics of the hardware. This
is often the reason for common mistrust in
TPMs and their vendors. Some major compa-
nies, however, have released their open-source
TPM implementations including Microsoft!4!
and Google.

Bus communication with the TPM is not
encrypted by default. The most common bus
used with discrete TPMs is LPC on Intel sys-
tems (I2C/SPI on others) which is a low speed
bus integrated in the Southbridge. The TPM
specification allows encryption of sensitive pa-
rameters within a command (not the entire bus
traffic) with AES-CFB together with HMAC
for authentication and protection against tam-
pering, as well as rolling nonces for protection
against replay attacks. The keys for encryption
and authentication must initially be uploaded
to the TPM on a trusted system.

TPM boot integrity measurement func-
tionality contains several caveats. It is less flex-
ible than Secure Boot as every TPM object pro-
tected by PCR-based authorization policy must
be replaced each time a boot image or configu-
ration included in PCR measurements has been
updated. Furthermore, security of Measured
Boot relies on the assumption that PCR regis-
ters are only reset when the entire system is re-
set. If there is any vulnerability in the software,
OS or TPM which allows the attacker to issue a
reset to the TPM without resetting the rest of
the system, then the PCRs get zeroed out and
the attacker may then replay the proper hash
sequence into the PCRs, spoofing the integrity

measurements and possibly unlocking secrets.
This has been the major method used in at-
tacks on Measured Boot!®!.

5 TUEFI Secure Boot and the FreeBSD
loader

UEFT Secure Boot is a method of ensur-
ing that only authenticated boot images are al-
lowed to run on the system. The security goals
of Secure Boot are similar to TPM Measured
Boot, however there are significant differences
between the two technologies. TPM Measured
Boot performs hash measurements of subse-
quent boot images and configuration, without
disturbing the boot process. It is up to the OS
and user software to verify PCR measurements
and take appropriate action. For example, one
could include remote attestation, in which a re-
mote server verifies signed PCR values against
its own database using Quote operation!®/. The
TPM may also release secrets based on specific
PCR values.

UEFT Secure Boot, on the other hand,
never passes execution to an unauthenticated
image. Furthermore, instead of only hashing,
it verifies certificates and signatures of the im-
ages it loads, with trust anchors and revoked
certificates stored in flash - DB and DBX vari-
ables respectively.

UEFI Secure Boot provides an impor-
tant advantage over TPM Measured Boot from
the system administration point of view. In
Measured Boot, PCR values will change on
firmware update. This requires that any soft-
ware and/or OS which relies on specific PCR
values must be updated with new configuration.
Thanks to the usage of certificates in Secure
Boot, one must simply sign the new firmware
image and it will be successfully authenticated.
Certificate chains can be employed to allow for
handling of complex certificate trust schemes.

Another significant difference is that
UEFT Secure Boot does not require the use of
TEE (Trusted Execution Environment) for se-
cure operations, although some ARM systems

make use of TrustZone technology along with
Arm Trusted Firmware to separate sensitive
operations from main execution mode. TPM,
however, may be regarded as a TEE as it of-
fers both secure cryptographic operations and
isolated secure storage.

The FreeBSD EFT loader is a regular EFI
application which can be verified by UEFT as
part of Secure Boot. The simplest approach of
including the FreeBSD kernel in Secure Boot
is to bundle the kernel into the loader binary
and make UEFT verify the whole package. The
loader would find the kernel image embedded
in its binary and pass execution to the kernel.
The ideal solution, however, would be to modify
the EFI loader to be able to read UEFI certifi-
cate lists and verify the kernel on its own. This
would ensure the proper chain of trust where
each boot element is clearly separated and ver-
ifies the next image to be loaded. It would also
eliminate the necessity to rebundle the loader
with the kernel on each kernel update.

The latter approach is implemented with

the help of Juniper veriexecl.

6 FreeBSD Veriexec and UEFI

Veriexec is a system developed by Juniper
Networks which allows restricting execution
only to verified code. It uses a signed manifest
which is a list containing a path and hash for
each verified file. The manifest is passed over to
/dev /veriexec char device by /sbin/veriexec!®l.
Veriexec consists of two parts, mac_veriexec[7]
- a kernel module that manages verification
during runtime and libsecureboot!®! which is
used by the loader.

Up to now the authenticity of the mani-
fest could only be verified using an embedded
trust anchor.

In our contribution we extend it to load
trust anchors from UEFI and implement a re-
vocation system which is also based on data
stored in firmwarel['9.

Manifest verification is done in userspace,
which opens a time window for someone to in-
ject their own malicious data. To fix this is-
sue, we introduce a kernel module which loads
a manifest based on data passed by the loader
through environmental variables!''l. This al-
lows verifying the signature of the manifest in
kernel space (by the loader) which eliminates
previous security concerns.

7 Acknowledgements

The work on TPM 2.0 driver sup-
port, libsecureboot and UEFI Veriexec support
in FreeBSD was initiated and sponsored by
Stormshield who also provided reference hard-
ware.

Work on this paper was sponsored by
Semihalf.

8 References

[1] FreeBSD TPM 2.0 driver
https://svnweb.freebsd.org/base/head/
sys/dev/tpm/

[2] IBM TSS https://sourceforge.
net/projects/ibmtpm20tss/

[3] fTPM: A Software-only Implemen-
tation of a TPM Chip http://ssaroiu.
azurewebsites.net/publications/
usenixsecurity/2016/ftpm.pdf

[4] Microsoft TPM 2.0 reference imple-
mentation https://github.com/Microsoft/
ms-tpm-20-ref

[5] Attacks on Measured Boot
https://www.usenix.org/system/files/
conference/usenixsecurity18/sec18-han.
pdf

[6] IBM TPM attestation https://
sourceforge.net/projects/ibmtpm20acs/

[7] mac_veriexec https://svnweb.
freebsd.org/base/head/sys/security/
mac_veriexec/

[8] /sbin/veriexec
freebsd.org/rS344567

https://revieus.

[9] Juniper libsecureboot
//revieus.freebsd.org/r5344565

https:
[10] Veriexec UEFI support https://
reviews.freebsd.org/D19093

[11] Veriexec in-kernel manifest parsing
https://reviews.freebsd.org/D19281

https://svnweb.freebsd.org/base/head/sys/dev/tpm/
https://svnweb.freebsd.org/base/head/sys/dev/tpm/
https://sourceforge.net/projects/ibmtpm20tss/
https://sourceforge.net/projects/ibmtpm20tss/
http://ssaroiu.azurewebsites.net/publications/usenixsecurity/2016/ftpm.pdf
http://ssaroiu.azurewebsites.net/publications/usenixsecurity/2016/ftpm.pdf
http://ssaroiu.azurewebsites.net/publications/usenixsecurity/2016/ftpm.pdf
https://github.com/Microsoft/ms-tpm-20-ref
https://github.com/Microsoft/ms-tpm-20-ref
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-han.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-han.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-han.pdf
https://sourceforge.net/projects/ibmtpm20acs/
https://sourceforge.net/projects/ibmtpm20acs/
https://svnweb.freebsd.org/base/head/sys/security/mac_veriexec/
https://svnweb.freebsd.org/base/head/sys/security/mac_veriexec/
https://svnweb.freebsd.org/base/head/sys/security/mac_veriexec/
https://reviews.freebsd.org/rS344567
https://reviews.freebsd.org/rS344567
https://reviews.freebsd.org/rS344565
https://reviews.freebsd.org/rS344565
https://reviews.freebsd.org/D19093
https://reviews.freebsd.org/D19093
https://reviews.freebsd.org/D19281

	Introduction
	TPM overview
	TPM usage in FreeBSD
	TPM limitations and caveats
	UEFI Secure Boot and the FreeBSD loader
	FreeBSD Veriexec and UEFI
	References

