
bhyvearm64: CPU and Memory Virtualization
on Armv8.0-A

Alexandru Elisei
alexandru.elisei@gmail.com

BSDCan 2019
Ottawa, Canada

May 2019

About Me

I Bachelor’s Degree in Computer Science from University
POLITEHNICA of Bucharest (Summer of 2018)

I bhyvearm64 was the subject of my Bachelor’s thesis

1 / 33

Outline

Project Overview

CPU Virtualization

Memory Virtualization

Future Work

Demo

Outline

Project Overview

CPU Virtualization

Memory Virtualization

Future Work

Demo

bhyvearm64

I What is bhyvearm64?
• Type 2 hypervisor for FreeBSD
• Virtualization on Armv8.0-A
• Based on bhyve for x86 and Armv7
• Not yet integrated with the FreeBSD kernel

I What can it do?
• Run a FreeBSD virtual machine on the Foundation Platform1

• It can use virtio-mmio for network and block devices

I What it cannot do?
• Create multiple virtual CPUs for a virtual machine
• Has not been run on real hardware

1https://arm.com/fvp

2 / 33

https://arm.com/fvp

bhyvearm64

I What is bhyvearm64?
• Type 2 hypervisor for FreeBSD
• Virtualization on Armv8.0-A
• Based on bhyve for x86 and Armv7
• Not yet integrated with the FreeBSD kernel

I What can it do?
• Run a FreeBSD virtual machine on the Foundation Platform1

• It can use virtio-mmio for network and block devices

I What it cannot do?
• Create multiple virtual CPUs for a virtual machine
• Has not been run on real hardware

1https://arm.com/fvp

2 / 33

https://arm.com/fvp

bhyvearm64

I What is bhyvearm64?
• Type 2 hypervisor for FreeBSD
• Virtualization on Armv8.0-A
• Based on bhyve for x86 and Armv7
• Not yet integrated with the FreeBSD kernel

I What can it do?
• Run a FreeBSD virtual machine on the Foundation Platform1

• It can use virtio-mmio for network and block devices

I What it cannot do?
• Create multiple virtual CPUs for a virtual machine
• Has not been run on real hardware

1https://arm.com/fvp

2 / 33

https://arm.com/fvp

Arm is Coming

Arm wants to enter the server market

I Amazon AWS Graviton CPUs (based on Cortex-A72)

I Arm Neoverse N1 CPUs (server-specific microarchitecture)
I Cavium ThunderX2:

“The results presented in this paper demonstrate that
Arm-based processors are now capable of providing levels of
performance competitive with state-of-the-art offerings from
the incumbent vendors, while significantly improving
performance per Dollar.”2

2S. McIntosh-Smith, J. Price, T. Deakin, and A. Poenaru, “Comparative Benchmarking of the First Generation
of HPC-optimised ARM Processors on Isambard.”

3 / 33

Arm is Coming

Arm wants to enter the server market

I Amazon AWS Graviton CPUs (based on Cortex-A72)

I Arm Neoverse N1 CPUs (server-specific microarchitecture)
I Cavium ThunderX2:

“The results presented in this paper demonstrate that
Arm-based processors are now capable of providing levels of
performance competitive with state-of-the-art offerings from
the incumbent vendors, while significantly improving
performance per Dollar.”2

2S. McIntosh-Smith, J. Price, T. Deakin, and A. Poenaru, “Comparative Benchmarking of the First Generation
of HPC-optimised ARM Processors on Isambard.”

3 / 33

Arm is Coming

Arm wants to enter the server market

I Amazon AWS Graviton CPUs (based on Cortex-A72)

I Arm Neoverse N1 CPUs (server-specific microarchitecture)

I Cavium ThunderX2:

“The results presented in this paper demonstrate that
Arm-based processors are now capable of providing levels of
performance competitive with state-of-the-art offerings from
the incumbent vendors, while significantly improving
performance per Dollar.”2

2S. McIntosh-Smith, J. Price, T. Deakin, and A. Poenaru, “Comparative Benchmarking of the First Generation
of HPC-optimised ARM Processors on Isambard.”

3 / 33

Arm is Coming

Arm wants to enter the server market

I Amazon AWS Graviton CPUs (based on Cortex-A72)

I Arm Neoverse N1 CPUs (server-specific microarchitecture)
I Cavium ThunderX2:

“The results presented in this paper demonstrate that
Arm-based processors are now capable of providing levels of
performance competitive with state-of-the-art offerings from
the incumbent vendors, while significantly improving
performance per Dollar.”2

2S. McIntosh-Smith, J. Price, T. Deakin, and A. Poenaru, “Comparative Benchmarking of the First Generation
of HPC-optimised ARM Processors on Isambard.”

3 / 33

bhyvearm64 Architecture

User
space

FreeBSD

bhyveload bhyve bhyvectl

libvmmapi

Kernel
space

vmm

/dev/vmm/<vmname>

4 / 33

bhyveload

b h y v e l o a d [−b <memory−base−a d d r e s s >] \
[−m <mem−s i z e >] \
[−k <k e r n e l−image >] \
[− l <l oad−a d d r e s s >] \
[−e <name=v a l u e >] \
<vmname>

Guest virtual hardware: devicetree

5 / 33

bhyve

bhyve −s ’0 x200@0x7000 #24: v i r t i o −blk , v i r t i o . img ’\
−s ’0 x200@0x6000 #23: v i r t i o −net , tap0 ’ \
−b \
<vmname>

6 / 33

bhyvectl

b h y v e c t l −−vm=<vmname> −−d e s t r o y

7 / 33

Outline

Project Overview

CPU Virtualization

Memory Virtualization

Future Work

Demo

Challenges

Challenges:

I The host must control the guest

Motivation: Popek and Goldberg’s safety requirement for
virtualization

Solution: use Exception Level 2 (EL2)

8 / 33

Challenges

Challenges:

I The host must control the guest

Motivation: Popek and Goldberg’s safety requirement for
virtualization

Solution: use Exception Level 2 (EL2)

8 / 33

Challenges

Challenges:

I The host must control the guest

Motivation: Popek and Goldberg’s safety requirement for
virtualization

Solution: use Exception Level 2 (EL2)

8 / 33

EL2

CPU execution mode for virtualization

I Shared general purpose registers

I Different virtual address space

I New system registers that control EL2

I New system registers that control EL1&EL0

9 / 33

EL2

CPU execution mode for virtualization

I Shared general purpose registers

I Different virtual address space

I New system registers that control EL2

I New system registers that control EL1&EL0

9 / 33

EL2

CPU execution mode for virtualization

I Shared general purpose registers

I Different virtual address space

I New system registers that control EL2

I New system registers that control EL1&EL0

9 / 33

EL2

CPU execution mode for virtualization

I Shared general purpose registers

I Different virtual address space

I New system registers that control EL2

I New system registers that control EL1&EL0

9 / 33

EL2

CPU execution mode for virtualization

I Shared general purpose registers

I Different virtual address space

I New system registers that control EL2

I New system registers that control EL1&EL0

9 / 33

EL2 Limitations in Armv8.0

I Different system register names

I Virtual address space that cannot be shared with userspace

I Synchronous exceptions are normally routed to EL1

I It is optional

Conclusion: the host must run at EL1

10 / 33

EL2 Limitations in Armv8.0

I Different system register names

I Virtual address space that cannot be shared with userspace

I Synchronous exceptions are normally routed to EL1

I It is optional

Conclusion: the host must run at EL1

10 / 33

EL2 Limitations in Armv8.0

I Different system register names

I Virtual address space that cannot be shared with userspace

I Synchronous exceptions are normally routed to EL1

I It is optional

Conclusion: the host must run at EL1

10 / 33

EL2 Limitations in Armv8.0

I Different system register names

I Virtual address space that cannot be shared with userspace

I Synchronous exceptions are normally routed to EL1

I It is optional

Conclusion: the host must run at EL1

10 / 33

EL2 Limitations in Armv8.0

I Different system register names

I Virtual address space that cannot be shared with userspace

I Synchronous exceptions are normally routed to EL1

I It is optional

Conclusion: the host must run at EL1

10 / 33

hypervisor Architecture

EL0

EL2

HARDWARE

FreeBSD Host

EL1

VM

Userspace

Kernel

vmm

Kernel

Userspace

11 / 33

Challenges (continued)

Challenges:

I The host must control the guest

I Alternate execution between the host and the guest

Solution: save CPU state

CPU state:

I General purpose registers

I EL1 system registers

I EL2 system registers that control execution at EL1&EL0

12 / 33

Challenges (continued)

Challenges:

I The host must control the guest

I Alternate execution between the host and the guest

Solution: save CPU state

CPU state:

I General purpose registers

I EL1 system registers

I EL2 system registers that control execution at EL1&EL0

12 / 33

Challenges (continued)

Challenges:

I The host must control the guest

I Alternate execution between the host and the guest

Solution: save CPU state

CPU state:

I General purpose registers

I EL1 system registers

I EL2 system registers that control execution at EL1&EL0

12 / 33

World Switch

World switches are executed:

I From guest to host

I From host to guest

Save CPU state:

I EL2 stack for host CPU state

I One struct hypctx for each virtual CPU

13 / 33

World Switch

World switches are executed:

I From guest to host

I From host to guest

Save CPU state:

I EL2 stack for host CPU state

I One struct hypctx for each virtual CPU

13 / 33

Challenges (continued)

Challenges:

I The host must control the guest

I Alternate execution between the host and the guest

I The host must execute privileged instructions on behalf of the
guest

Motivation: Popek and Goldberg’s fidelity requirement for
virtualization

Solution: host access to guest state

14 / 33

Challenges (continued)

Challenges:

I The host must control the guest

I Alternate execution between the host and the guest

I The host must execute privileged instructions on behalf of the
guest

Motivation: Popek and Goldberg’s fidelity requirement for
virtualization

Solution: host access to guest state

14 / 33

Challenges (continued)

Challenges:

I The host must control the guest

I Alternate execution between the host and the guest

I The host must execute privileged instructions on behalf of the
guest

Motivation: Popek and Goldberg’s fidelity requirement for
virtualization

Solution: host access to guest state

14 / 33

Running in EL2

Goals:

I Execute code

I Share memory with host running in EL1

Running in EL2:

I Create function wrapper for the HVC assembly instruction

I Replace EL2 exception vector table

I Map the code in the EL2 address space

I Convention: first argument is the function to execute

15 / 33

Running in EL2

Goals:

I Execute code

I Share memory with host running in EL1

Running in EL2:

I Create function wrapper for the HVC assembly instruction

I Replace EL2 exception vector table

I Map the code in the EL2 address space

I Convention: first argument is the function to execute

15 / 33

Running in EL2

Goals:

I Execute code

I Share memory with host running in EL1

Running in EL2:

I Create function wrapper for the HVC assembly instruction

I Replace EL2 exception vector table

I Map the code in the EL2 address space

I Convention: first argument is the function to execute

15 / 33

Running in EL2

Goals:

I Execute code

I Share memory with host running in EL1

Running in EL2:

I Create function wrapper for the HVC assembly instruction

I Replace EL2 exception vector table

I Map the code in the EL2 address space

I Convention: first argument is the function to execute

15 / 33

Running in EL2

Goals:

I Execute code

I Share memory with host running in EL1

Running in EL2:

I Create function wrapper for the HVC assembly instruction

I Replace EL2 exception vector table

I Map the code in the EL2 address space

I Convention: first argument is the function to execute

15 / 33

EL0, EL1 and EL2 address spaces

TTBR0_EL1

TTBR1_EL1 0xFFFF0000 00000000

0xFFFFFFFF FFFFFFFF

0x00000000 00000000

0x0000FFFF FFFFFFFF

TTBR0_EL2

Userspace VA
Range

Kernel VA
Range

EL2 VA Range
Physical
Memory

0x0000FFFF FFFFFFFF

0x00000000 00000000

EL0 & EL1
address
space

EL2 address
space

16 / 33

Sharing Memory

TTBR0_EL2 0x00000000 00000000

0x0000FFFF FFFFFFFF

Identity
mapping

Kernel VA
Range

0x00007FFF FFFFFFFF

17 / 33

Outline

Project Overview

CPU Virtualization

Memory Virtualization

Future Work

Demo

Challenges

Challenges:

I The guest assumes it has access to the entire physical memory

I The host must control the entire physical memory

Solution: stage 2 translation

18 / 33

Challenges

Challenges:

I The guest assumes it has access to the entire physical memory

I The host must control the entire physical memory

Solution: stage 2 translation

18 / 33

Translation Regimes

Stage 1 translationVA PA

Stage 2 translationIPA PAStage 1 translationVA

Host

Guest Hypervisor

19 / 33

Stage 1 Translation with 4K Pages

Subrange selector (16 bits) Page offset (12 bits)T0 index T1 index T2 index T3 index

48 bits

VA
(64 bits)

TD
TD

TD

PD

Level 0 table
Level 1 table

Level 2 table
Level 3 table

Key:
TD - Table Descriptor
PD - Page Descriptor

PA
(variable)

Page offset

PA +

20 / 33

Stage 2 Translation with 4K Pages

Page offset (12 bits)T1 index T2 index T3 index

TD
TD

PD

Level 1 table

Level 2 table
Level 3 table

Key:
TD - Table Descriptor
PD - Page Descriptor

PA

Page offset

IPA

PA +

21 / 33

Stage 1 vs Stage 2

Differences between stage 1 an stage 2 translation:

I Stage 2 has 3 tables (vs 4)

I Stage 2 starts at the level 1 table (vs level 0)

I Stage 2 has a variable level 1 table size

22 / 33

Stage 1 vs Stage 2

Differences between stage 1 an stage 2 translation:

I Stage 2 has 3 tables (vs 4)

I Stage 2 starts at the level 1 table (vs level 0)

I Stage 2 has a variable level 1 table size

22 / 33

Stage 1 vs Stage 2

Differences between stage 1 an stage 2 translation:

I Stage 2 has 3 tables (vs 4)

I Stage 2 starts at the level 1 table (vs level 0)

I Stage 2 has a variable level 1 table size

22 / 33

4K Page Descriptors

63 55
UXN PXN
54 53 52 48 47

PA[48:12]
12

nG
11 10 8

Memory attributes
7 2 1 0

Stage 1 page descriptor

63 55
XN
54 53 52 48 47

PA[48:12]
12 11 10 8 7 2 1 0

Stage 2 page descriptor

Legend

Identical

Different

Memory attributes

23 / 33

Stage 1 vs Stage 2 (continued)

Differences between stage 1 and stage 2 translation:

I Stage 2 has 3 tables (vs 4)

I Stage 2 starts at the level 1 table (vs level 0)

I Stage 2 has a variable level 1 table size

I Different format for the page table entries

Solution: implement a new translation table format

24 / 33

Stage 1 vs Stage 2 (continued)

Differences between stage 1 and stage 2 translation:

I Stage 2 has 3 tables (vs 4)

I Stage 2 starts at the level 1 table (vs level 0)

I Stage 2 has a variable level 1 table size

I Different format for the page table entries

Solution: implement a new translation table format

24 / 33

Implementation

A new translation table type:

enum pmap type {
PT STAGE1 ,
PT STAGE2 ,
PT INVALID ,

} ;
s t r u c t pmap {

. . .
enum pmap type pm type ;

} ;

Existing functions take into account the table type:

i n t
pmap enter (pmap t pmap , . . .)
{

. . .
i f (pmap−>pm type == PT STAGE1) {

/∗ Crea te s t ag e 1 page ∗/
} e l s e {

/∗ Crea te s t ag e 2 page ∗/
}
. . .

}

25 / 33

VM memory

b h y v e l o a d −k k e r n e l . img −b 0 x1000 −m 128MB \
example vm

Guest
physical

addresses
(IPAs)

Stage 1
translationVA

Guest

0x1000

Host

0x1000 + 128MB

Stage 2
translation PA

kernel.img

26 / 33

VM memory

b h y v e l o a d −k k e r n e l . img −b 0 x1000 −m 128MB \
example vm

Guest
physical

addresses
(IPAs)

Stage 1
translationVA

Guest

0x1000

Host

0x1000 + 128MB

Stage 2
translation PA

kernel.img

26 / 33

bvmconsole

bhyve −b example vm

Stage 2 translationIPA PAStage 1 translationVA

BVM_CONS_PORT Data
abort

27 / 33

bvmconsole

bhyve −b example vm

Stage 2 translationIPA PAStage 1 translationVA

BVM_CONS_PORT Data
abort

27 / 33

Outline

Project Overview

CPU Virtualization

Memory Virtualization

Future Work

Demo

Future Work

Merge bhyvearm64

I Split bhyve for x86 into machine independent (MI) and
dependent (MD) code

I User space improvements

I Hypervisor improvements

I Better validation

28 / 33

MI/MD Split

Promote code reuse

I Split libvmmapi (D17874)

I Split bhyve, bhyveload and bhyvectl

I Split the vmm kernel module

29 / 33

MI/MD Split

Promote code reuse

I Split libvmmapi (D17874)

I Split bhyve, bhyveload and bhyvectl

I Split the vmm kernel module

29 / 33

User Space Improvements

I Use virtio-pci

I Emulate the NS16550A UART

I Emulate USB

30 / 33

User Space Improvements

I Use virtio-pci

I Emulate the NS16550A UART

I Emulate USB

30 / 33

User Space Improvements

I Use virtio-pci

I Emulate the NS16550A UART

I Emulate USB

30 / 33

Hypervisor Improvements

I Implement SMP

I Implement Virtual Host Extensions (VHE) (Armv8.1)

EL0

EL2

HARDWARE

FreeBSD

EL1

VM

Userspace

Kernel

vmm

FreeBSD kernel

Userspace

Figure: Without VHE

EL0

EL2

HARDWARE

EL1

VM

Userspace

Kernel

FreeBSD kernel

Userspace

vmm

Figure: With VHE

31 / 33

Hypervisor Improvements

I Implement SMP

I Implement Virtual Host Extensions (VHE) (Armv8.1)

EL0

EL2

HARDWARE

FreeBSD

EL1

VM

Userspace

Kernel

vmm

FreeBSD kernel

Userspace

Figure: Without VHE

EL0

EL2

HARDWARE

EL1

VM

Userspace

Kernel

FreeBSD kernel

Userspace

vmm

Figure: With VHE

31 / 33

Hypervisor Improvements

I Implement SMP

I Implement Virtual Host Extensions (VHE) (Armv8.1)

EL0

EL2

HARDWARE

FreeBSD

EL1

VM

Userspace

Kernel

vmm

FreeBSD kernel

Userspace

Figure: Without VHE

EL0

EL2

HARDWARE

EL1

VM

Userspace

Kernel

FreeBSD kernel

Userspace

vmm

Figure: With VHE

31 / 33

Hypervisor Improvements

I Implement SMP

I Implement Virtual Host Extensions (VHE) (Armv8.1)

EL0

EL2

HARDWARE

FreeBSD

EL1

VM

Userspace

Kernel

vmm

FreeBSD kernel

Userspace

Figure: Without VHE

EL0

EL2

HARDWARE

EL1

VM

Userspace

Kernel

FreeBSD kernel

Userspace

vmm

Figure: With VHE

31 / 33

Better Validation

I KVM-unit-tests3

• Patches for using NS16550A UART and PSCI
• Same boot protocol as the Linux kernel

I Boot Linux as a guest

3https://www.linux-kvm.org/page/KVM-unit-tests

32 / 33

Better Validation

I KVM-unit-tests3

• Patches for using NS16550A UART and PSCI
• Same boot protocol as the Linux kernel

I Boot Linux as a guest

3https://www.linux-kvm.org/page/KVM-unit-tests

32 / 33

Outline

Project Overview

CPU Virtualization

Memory Virtualization

Future Work

Demo

Demo

33 / 33

Acknowledgements

I Mihai Carabaş (technical advisor)

I Mihai Darius (virtio-mmio)

I FreeBSD Foundation (financial support)

Questions?

Thank you!

I Project repository:
https://github.com/FreeBSD-UPB/freebsd/tree/

projects/bhyvearm64

I Scripts and tutorial:
https://github.com/FreeBSD-UPB/bhyvearm64-utils

https://github.com/FreeBSD-UPB/freebsd/tree/projects/bhyvearm64
https://github.com/FreeBSD-UPB/freebsd/tree/projects/bhyvearm64
https://github.com/FreeBSD-UPB/bhyvearm64-utils

Questions?

Thank you!

I Project repository:
https://github.com/FreeBSD-UPB/freebsd/tree/

projects/bhyvearm64

I Scripts and tutorial:
https://github.com/FreeBSD-UPB/bhyvearm64-utils

https://github.com/FreeBSD-UPB/freebsd/tree/projects/bhyvearm64
https://github.com/FreeBSD-UPB/freebsd/tree/projects/bhyvearm64
https://github.com/FreeBSD-UPB/bhyvearm64-utils

	Project Overview
	CPU Virtualization
	Memory Virtualization
	Future Work
	Demo

