MirageOS: minimizing the attack surface and vectors of network
services

Hannes Mehnert, robur.io, hannesm®@mastodon.social

BSDCan, 18th May 2019, Ottawa

1/37

About me

Hacker interested in communication infrastructure, network and security protocols
Using FreeBSD since 4.6

Academic research on formal verification, programming language semantics,
security

PhD (2013, ITU Copenhagen) incremental verification of the correctness of
object-oriented software using Coq and higher-order separation logic

PostDoc (2014-2017) at University of Cambridge: MirageOS and formal model of
TCP/IP and the Unix Sockets APl in HOL4

2018 started a non-profit robur.io in Berlin with the goal to deploy MirageOS

Running my own communication infrastructure (eMail, DNS, ..) since 2000

2/37

Motivation

Memory corruption issues are the root-cause of 68% of listed CVEs.

Ben Hawkes analysed 108 CVE since start of Google's Project Zero in 2014, 0Oday "In
the Wild" https://googleprojectzero.blogspot.com/p/0day.html (published
2019-05-15)

3/37

https://googleprojectzero.blogspot.com/p/0day.html

~

(Application BinaryJ (Conﬁguration Files

_

(Programming language runtimeJ

[System libraries (Iibc)J (Crypto (IibssI)J

Hardware (CPU, disk, NIC, memory)

Stack

Common Unix applications depend
on shared libraries, their
configuration files.

Reproducing one application on a
separate computer requires all
these artifacts.

Kernel isolates processes from
each other.

Compromise is contained to a
single process.

Escalation by flaws in the system
call API (568 in sys/syscall.h)

4/37

Code you care
about

Code the 0S
insists you need

(Application BinaryJ (Conﬁguration FiIesJ

(Programming language runtimeJ

(System libraries (Iibc)J (Crypto (IibssI)J

Emulated Hardware and assigned resources
bt
- Resource management
- Scheduling of VMs

Hardware (CPU, disk, NIC, memory)

Hypervisor stack

e The hypervisor manages the
physical machine and assigns
resources to virtual machines.
Hardware is emulated.

e Scheduling at every layer

e Hypervisor isolates virtual
machines from each other

6 /37

MirageOS unikernel - library operating system

Application code

e Each MirageOS unikernel is a separate

virtual machine

(: e Each is tailored for its single service at
OCaml runtime J .) }
compilation time
Wrdware and assigned resources
e Using OCaml libraries
Hypervisor vmm.ko
- Resource management H
i — e Single address space

e Programming language guarantees memory
safety

o Cooperative tasks (no interrupts)

7/37

App

Virtio hypercall Virtio
[bhyve/load/ctl) [solos-hth [vmdlvmctl

8
/88

—

Hypervisor

- Resource management vmm.ko

- Scheduling of VMs

Hardware (CPU, disk, NIC, memory)

MirageOS Hypervisor integration

Custom solo5-hvt monitor process
Less than 3000 lines of code

Sets up memory, loads statically linked ELF
binary, sets up VCPU

Boot: jmp 0x100000 (passing command
line arguments)

Hypercalls: block device (read, write, info),
network device (read, write, info)

Console write, wall clock, monotonic clock,
abort, exit, yield

8 /37

Virtual Machine in detail

Application code

(TCP/IP J(RNG] TS
(Iwt](crypto] X.509
(netmms](oo j(&] e nolibc: dtoa, dlmalloc, strcmp,
strlen: 78000 lines C (6200 malloc)
e 1ibm: openlibm (FreeBSD libm repackaged
by Julialang) 22000 lines C
E&D

e OCaml runtime: 725000 lines C

9/37

Perfection is achieved, not when there is nothing more to add, but when there
is nothing left to take away.

Antoine de Saint-Exupery (1900 - 1944)

10/37

OCaml

Multi-paradigm memory-managed programming language

Expressive type system with type inference

Strong type system, no downcasts or pointer arithmetics

Unique module system

Compiles to native machine code, types are erased during compilation
Used by industry and academia for proof assistants, compilers

Developed since more than 25 years at INRIA

11/37

MirageOS OCaml style

No objects

Immutable data as much as sensible

Value passing style: state and data in, state and reply out
Errors are explicitly declared in the API, no exceptions
Concurrent programming with promises using the 1wt library
Declarative code - easy to understand and reason about

Expressing invariants (e.g. read-only buffer) in the type system

12/37

Example: MirageOS CLOCK interface

module type PCLOCK = sig
val now_d_ps : unit -> int * int64
(¥* [now_d_ps ()] is [(d, ps)] representing the POSIX time occuring
at [d] * 86°400e12 + [ps] POSIX picoseconds from the epoch
1970-01-01 00:00:00 UTC. [ps] is in the range
[0;86_399_999_999_999_999L]. *)

end

e Implementation depends on target
e On Unix gettimeofday is used
e On hypervisors the CPU instruction RDTSC is used

13/37

e As MirageOS unikernel
developer, you program
against the interface!

e Write once, run anywhere ;)

Example: Interfaces and implementation

module Main (T : TIME) (P : PCLOCK) = struct
let start _time _pclock =

1

i
s
end

et rec speak () =

let now = Ptime.v (P.now_d_ps ()) in

let pp_ts = Ptime.pp_rfc3339 () in
Format.printf "It is %a\n/k!" pp_ts now;
T.sleep_ns (Duration.of_sec 1) >>= fun ()

speak ()
n
peak ()

14 /37

Example: Running a unikernel

mirage configure #configures (defaults to Uniz target)

make depend #installs necessary dependencies

mirage build #compiles the unikernel, producing an ELF exzecutable
./speaking_clock #ezecutes it

mirage configure -t hvt #configures for Hardware Virtualized Tender
make depend #installs necessary dependencies

mirage build #compiles, output: monitor (solob-hut) and VM image (.hut)
./solob-hvt speaking clock.hvt #ezecutes it

15 /37

Supported MirageQOS targets

Unix binary (development and testing)

Architectures: x86-64, arm64, ESP32, soon RISC-V

Hypervisor: Xen, KVM, FreeBSD BHyve, OpenBSD VMM, Virtio
Muen separation kernel (Ada/SPARK)

Genode operating system framework (Nova microkernel, L4)

Linux binary with strict seccomp filters

16 /37

Unikernel:

Bitcoin Pifata

You have reached the BTC
Pinata.

BTC Pifiata knows the private key to the bitcoin address 183XuXTTgnfYfKcHbI4sZeF46adoFnihdh. If
you break the Pifiata, you get to keep what's insid

Here are the rules of the game
« You can connect to port 10098 using TLS. Pifiata will send the key and hang up

« You can connect to port 10901 using TCP. Pifiata will immediately close the connection
and connect back over TLS to port 49991 on the initiating host, send the key, and hang
wp

* You can connect to port 10002 using TCP. Pifiata will initiate a TLS handshake over that
channel serving as a client, send the key over TLS, and hang up

And heres the icker: in both the client and server rales, Pifats requires the other end to
present a certificate. Authentication is perforned using standard path validation wit
single certificate as the trust anchor. And no, you can't have the certificate key.

It follows that it should be impossible to successfully establish a TLS connection as long as
Pinata is working properly. To get the spoils, you have fo smash it

Before you ask: yes, Pifiata will talk to itself and you can enjoy watching it do so.

BIC Pifiata is a Mirage0s unikernel using not quite so broken soffware. It is written in OCanl,
runs directly on Xen, and is using native OCaml TLS and X.509 implementations

The full List of installed software and a toy unikernel without secrets are available. There
is no need to use the old automated tools on Piiata - roll your own instead. This challenge
runs until the above address no longer contains the 10 bitcoins it started with, or until we
Tose interest

Why are we doing this? At the beginning of 2014 we started to develop a not quite so broken
TLS implenentation from scratch. You can read more about it on https://ngsb.io or watch our
31c3 talk about it. Now, we want fo boost our confidence in the TLS implementation we've
developed and show that robust systems software can be written in a functional language. We
recapitulated the first five months of the Pinata

ve are well aware that bounties can only disprove the security of a system, and never prove
it. We won't take home the message that we are ‘unbreakable', 'correct’, and especially not

17 /37

Marketing of our from-scratch TLS
implementation

Transparent and self-serving security bait

Web server which contains a private key for
a Bitcoin wallet

If a peer authenticates (using TLS and
client certificates), it sends the private key

Online since February 2015
Contained 10 BTC until March 2018

count

600000

500000

400000

300000

200000

100000

Unikernel: Bitcoin Pifata

Cumulative Pinata accesses

HTTP
TLS ===

2015-07 2016-01 2016-07 2017-01 2017-07 2018-01
date

18 /37

SMALL!

8.2MB
102 kloc

No extra stuff!

Trusted computing base - Bitcoin Pifiata

@amirme

~200MB
2560 kloc

e Throughput

350

300

Thoughput (MB/s)
- N N
8 8 2

v
o

Performance of nqsb-TLS (2015, on a laptop)

e—e OpenSSL
e e PolarSSL
e—e nqgsb-tis

,_‘
%
o

o

=

¢ Handshakes (number per second)

ngsb OpenSSL Polar

16 64 256
Block size (bytes)

1024

8192

RSA 698 723 672
DHE-RSA 601 515 367

20/37

MirageOS libraries

. TLS it
m ons Y Opﬁfp
Kl Let’s Encrypt

-“-Prometheus
>
SSH® * 'ﬁ'a
syslog o

SNMP

21/37

88 unikernel stats -

Monitoring

1.688 Mil

ngsb.nqsbiototal bytes in

25.9 MB

ngsb.

79.4 Bil

nasb.ngsbio total tep connectl.

1.185K

ngsb.nqsbio malloc(jed

10.29 MB

18.0 MB

A

190 1940 195

ngsb.ngsbio gc heap.

3.93 MB

11.30 MB

ngsb.ngsbio gc ve

1.811 MB

4.10 kB 20.5kB
webservr access, tcp comectons,seepig tasks

ngsb.ngsbio gc minor collecti.

1.937 K 5

nasb.nqsbio slecper tasks

131.1 kB

nasb.ngsbio logs warning

24.7 MB

ngsb.ngsbio net total bytes in

25.9 MB

s
19 2.198 MB

network byte throughput

w0 1810 1820

ngsb.ngsbio net ttal bytes out

24.7 MB

relessable

2.096 kB

0 1920 193 1940 19
netif recubyes = se

2.121 MB

48 3

memory (rusage, byve, malloc, o)

Replies to DNS requests on port 53

Zone data as a trie is kept in memory
Storage in a git remote in zone file format
Configuration (ip address, git remote, syslog,
No block device

Unikernel: DNS server

..) via boot arguments

23/37

Unikernel: DNS server

Replies to DNS requests on port 53

Zone data as a trie is kept in memory

Storage in a git remote in zone file format

Configuration (ip address, git remote, syslog, ..) via boot arguments
No block device

Git pre-commit hook validates changes: SOA was increased, ...
Git post-commit hook notifies (RFC 1996)

24 /37

Unikernel: DNS server

Replies to DNS requests on port 53

Zone data as a trie is kept in memory

Storage in a git remote in zone file format

Configuration (ip address, git remote, syslog, ..) via boot arguments
No block device

Git pre-commit hook validates changes: SOA was increased, ...
Git post-commit hook notifies (RFC 1996)

TSIG support HMAC-authentication - RFC 2845
Modification also via (authenticated) nsupdate (RFC 2136)
Successful nsupdate implies a git push to the repository

25 /37

Unikernel: DNS server

Replies to DNS requests on port 53

Zone data as a trie is kept in memory

Storage in a git remote in zone file format

Configuration (ip address, git remote, syslog, ..) via boot arguments
No block device

Git pre-commit hook validates changes: SOA was increased, ...
Git post-commit hook notifies (RFC 1996)

TSIG support HMAC-authentication - RFC 2845
Modification also via (authenticated) nsupdate (RFC 2136)
Successful nsupdate implies a git push to the repository

Secondaries are notified on update, and start zone transfer (AXFR/IXFR)
VM image size roughly 8MB (including IP stack, DNS, git)

26 /37

Existing MirageOS unikernels

Various web sites including mirage.io and ngsb.io

Content management system Canopy that serves Markdown files from a git remote
OpenVPN client (work in progress)

QubesOS firewall (run-time rule changes under development)

CalDAV server (test deployment since November 2018)

DNS server (primary, secondary, let's encrypt certificate issuance)

DNS resolver (work in progress)

DHCP server

SMTP server (work in progress)

Albatross orchestration system, deploying unikernels via TLS handshake (client
certs)

27 /37

https://mirage.io
https://nqsb.io

Security

Minimized attack surface

Avoiding common attack vectors, such as memory corruptions

Defense in depth (in progress): W ~ X mapping (Linux only), stack guard, ASLR
Formal verification on the horizon

Supply chain: signed library releases, reproducible builds

28 /37

Signed library releases (wip)

Library authors sign their releases

A quorum of repository maintainers delegates packages to authors

Impact of a private key compromise or loss is contained to their packages

If a quorum of maintainers is compromised, game over

Rollback, mix-and-match attacks mitigated by snapshot service

Freeze, slow retrieval attacks mitigated by timestamp service

Using update framework (Cappos NYU) with augmentation proposal TAP8

29 /37

Reproducible builds

Simple idea: compiling the source should produce identical output

Temporary files names, timestamps, build path are problematic

Environment (C compiler, libc, ..) needs to be specified as input

The OCaml compiler and runtime are reproducible, MirageOS unikernels mostly

reproducible-builds.org

30/37

https://reproducible-builds.org/

Call for help: how to destroy a BHyve VM?

e Currently we use sysctl "hw.vmm.destroy" in atexit

¢ Requires root privileges :|

31/37

Call for help: how to protect memory (W ~ X)

We mmap memory in the host system process

And mprotect to set the protection bits

The guest mapping is not changed by this (still writable and executable)
https://github.com/Solo5/s0lo5/issues/303

We are keen to test any solution (different syscall, ..)

32/37

https://github.com/Solo5/solo5/issues/303

Testing and formal verification

Unit testing, quickcheck, fuzz-based testing

Model checking with TLA+ was used for libraries
Interactive proof assistant Coq generates OCaml code
Dependently typed Agda generates OCaml code
CFML is a proof system specifically for OCaml

33/37

Research at University of Cambridge since
2008 (ongoing student projects, etc.)

Bi-annual hack retreats since 2016 (7 days,

735 participants, next September 23rd -
28th)

Dogfooding our unikernels (DHCP, DNS)
Open source contributors worldwide

Docker for Mac and Docker for Windows
use MirageOS libraries

Running 15 unikernels on my servers since
a year (DNS, Webserver, CalDAV)

Community

34/37

Rome ne s'est pas faite en un jour (Rome wasn't built in a day)

Li Proverbe au Vilain, around 1190

35/37

Conclusion

Radical approach to operating system development

Security from the ground up

Reduced complexity

Reasonable performance

Boots in milliseconds

Permissively licensed (BSD/MIT)

More information at mirage.io

We at robur.io provide commercial MirageOS development as non-profit company
Contact me: EMail hannes@mehnert.org

Mastodon: hannesm@mastodon.social

36 /37

https://mirage.io
https://robur.io

Selected related talks

At FOSDEM 2019 about Solo5 by Martin Lucina
https://fosdem.org/2019/schedule/event/solo5_unikernels/

At 34C3 (2017) by Mindy Preston
https://media.ccc.de/v/34c3-8949-1ibrary_operating_systems

At Lambda World 2018 by Romain Calascibetta
https://www.youtube.com/watch?v=urG5BjvjWi8

At Esper (2015) by Anil Madhavapeddy
https://www.youtube.com/watch?v=bC7rTUEZfmI

37/37

https://fosdem.org/2019/schedule/event/solo5_unikernels/
https://media.ccc.de/v/34c3-8949-library_operating_systems
https://www.youtube.com/watch?v=urG5BjvjW18
https://www.youtube.com/watch?v=bC7rTUEZfmI

