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About me

• Hacker interested in communication infrastructure, network and security protocols
• Using FreeBSD since 4.6
• Academic research on formal verification, programming language semantics,
security

• PhD (2013, ITU Copenhagen) incremental verification of the correctness of
object-oriented software using Coq and higher-order separation logic

• PostDoc (2014-2017) at University of Cambridge: MirageOS and formal model of
TCP/IP and the Unix Sockets API in HOL4

• 2018 started a non-profit robur.io in Berlin with the goal to deploy MirageOS
• Running my own communication infrastructure (eMail, DNS, ..) since ~2000
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Motivation

Memory corruption issues are the root-cause of 68% of listed CVEs.

Ben Hawkes analysed 108 CVE since start of Google’s Project Zero in 2014, 0day "In
the Wild" https://googleprojectzero.blogspot.com/p/0day.html (published
2019-05-15)
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Configuration Files • Common Unix applications depend
on shared libraries, their
configuration files.

• Reproducing one application on a
separate computer requires all
these artifacts.

• Kernel isolates processes from
each other.

• Compromise is contained to a
single process.

• Escalation by flaws in the system
call API (568 in sys/syscall.h)
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Hypervisor stack
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Hypervisor
- Resource management
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Kernel

• The hypervisor manages the
physical machine and assigns
resources to virtual machines.
Hardware is emulated.

• Scheduling at every layer
• Hypervisor isolates virtual
machines from each other
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MirageOS unikernel - library operating system

Hardware (CPU, disk, NIC, memory)

Hypervisor
- Resource management

- Scheduling of VMs

Emulated Hardware and assigned resources

Network stack

                    OCaml runtime                      

Application code

Other OCaml
libraries

Cooperative Tasks

vmm.ko

Kernel

• Each MirageOS unikernel is a separate
virtual machine

• Each is tailored for its single service at
compilation time

• Using OCaml libraries
• Single address space
• Single core
• Programming language guarantees memory
safety

• Cooperative tasks (no interrupts)
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MirageOS Hypervisor integration

SchedulerFile system

Process
Management

Network

Hardware
Drivers

User
Management

System calls, Sockets API

Hypervisor
- Resource management
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vmm.ko

bhyve/load/ctl vmd/vmctlsolo5-hvt

VM VM

App App

MirageOS

Virtio Virtiohypercall

Hardware (CPU, disk, NIC, memory)

• Custom solo5-hvt monitor process
• Less than 3000 lines of code
• Sets up memory, loads statically linked ELF
binary, sets up VCPU

• Boot: jmp 0x100000 (passing command
line arguments)

• Hypercalls: block device (read, write, info),
network device (read, write, info)

• Console write, wall clock, monotonic clock,
abort, exit, yield
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Virtual Machine in detail

OCaml runtime

lwt

solo5-hvt

Hypercalls

libmnolibc

TCP/IP

net-solo5

crypto

ASN.1

X.509

TLSRNG

libgmp

Application code

• nolibc: dtoa, dlmalloc, strcmp,
strlen: ~8000 lines C (6200 malloc)

• libm: openlibm (FreeBSD libm repackaged
by Julialang) ~22000 lines C

• OCaml runtime: ~25000 lines C
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.

Perfection is achieved, not when there is nothing more to add, but when there
is nothing left to take away.

Antoine de Saint-Exupery (1900 - 1944)

10 / 37



OCaml

• Multi-paradigm memory-managed programming language
• Expressive type system with type inference
• Strong type system, no downcasts or pointer arithmetics
• Unique module system
• Compiles to native machine code, types are erased during compilation
• Used by industry and academia for proof assistants, compilers
• Developed since more than 25 years at INRIA
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MirageOS OCaml style

• No objects
• Immutable data as much as sensible
• Value passing style: state and data in, state and reply out
• Errors are explicitly declared in the API, no exceptions
• Concurrent programming with promises using the lwt library
• Declarative code - easy to understand and reason about
• Expressing invariants (e.g. read-only buffer) in the type system
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Example: MirageOS CLOCK interface

module type PCLOCK = sig
val now_d_ps : unit -> int * int64
(** [now_d_ps ()] is [(d, ps)] representing the POSIX time occuring

at [d] * 86’400e12 + [ps] POSIX picoseconds from the epoch
1970-01-01 00:00:00 UTC. [ps] is in the range
[0;86_399_999_999_999_999L]. *)

end

• Implementation depends on target
• On Unix gettimeofday is used
• On hypervisors the CPU instruction RDTSC is used
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Example: Interfaces and implementation

• As MirageOS unikernel
developer, you program
against the interface!

• Write once, run anywhere ;)

module Main (T : TIME) (P : PCLOCK) = struct
let start _time _pclock =
let rec speak () =
let now = Ptime.v (P.now_d_ps ()) in
let pp_ts = Ptime.pp_rfc3339 () in
Format.printf "It is %a\n%!" pp_ts now;
T.sleep_ns (Duration.of_sec 1) >>= fun () ->
speak ()

in
speak ()

end
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Example: Running a unikernel

$ mirage configure #configures (defaults to Unix target)
$ make depend #installs necessary dependencies
$ mirage build #compiles the unikernel, producing an ELF executable
$ ./speaking_clock #executes it

$ mirage configure -t hvt #configures for Hardware Virtualized Tender
$ make depend #installs necessary dependencies
$ mirage build #compiles, output: monitor (solo5-hvt) and VM image (.hvt)
$ ./solo5-hvt speaking_clock.hvt #executes it

15 / 37



Supported MirageOS targets

• Unix binary (development and testing)
• Architectures: x86-64, arm64, ESP32, soon RISC-V
• Hypervisor: Xen, KVM, FreeBSD BHyve, OpenBSD VMM, Virtio
• Muen separation kernel (Ada/SPARK)
• Genode operating system framework (Nova microkernel, L4)
• Linux binary with strict seccomp filters
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Unikernel: Bitcoin Piñata
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Unikernel: Bitcoin Piñata

• Marketing of our from-scratch TLS
implementation

• Transparent and self-serving security bait
• Web server which contains a private key for
a Bitcoin wallet

• If a peer authenticates (using TLS and
client certificates), it sends the private key

• Online since February 2015
• Contained 10 BTC until March 2018
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Trusted computing base - Bitcoin Piñata
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Performance of nqsb-TLS (2015, on a laptop)

• Throughput

• Handshakes (number per second)

nqsb OpenSSL Polar
RSA 698 723 672
DHE-RSA 601 515 367
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MirageOS libraries
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Monitoring
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Unikernel: DNS server

• Replies to DNS requests on port 53
• Zone data as a trie is kept in memory
• Storage in a git remote in zone file format
• Configuration (ip address, git remote, syslog, ..) via boot arguments
• No block device

• Git pre-commit hook validates changes: SOA was increased, . . .
• Git post-commit hook notifies (RFC 1996)

• TSIG support HMAC-authentication - RFC 2845
• Modification also via (authenticated) nsupdate (RFC 2136)
• Successful nsupdate implies a git push to the repository

• Secondaries are notified on update, and start zone transfer (AXFR/IXFR)
• VM image size roughly 8MB (including IP stack, DNS, git)
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Existing MirageOS unikernels

• Various web sites including mirage.io and nqsb.io
• Content management system Canopy that serves Markdown files from a git remote
• OpenVPN client (work in progress)
• QubesOS firewall (run-time rule changes under development)
• CalDAV server (test deployment since November 2018)
• DNS server (primary, secondary, let’s encrypt certificate issuance)
• DNS resolver (work in progress)
• DHCP server
• SMTP server (work in progress)
• Albatross orchestration system, deploying unikernels via TLS handshake (client
certs)
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Security

• Minimized attack surface
• Avoiding common attack vectors, such as memory corruptions
• Defense in depth (in progress): W ˆ X mapping (Linux only), stack guard, ASLR
• Formal verification on the horizon
• Supply chain: signed library releases, reproducible builds
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Signed library releases (wip)

• Library authors sign their releases
• A quorum of repository maintainers delegates packages to authors
• Impact of a private key compromise or loss is contained to their packages
• If a quorum of maintainers is compromised, game over
• Rollback, mix-and-match attacks mitigated by snapshot service
• Freeze, slow retrieval attacks mitigated by timestamp service
• Using update framework (Cappos NYU) with augmentation proposal TAP8
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Reproducible builds

• Simple idea: compiling the source should produce identical output
• Temporary files names, timestamps, build path are problematic
• Environment (C compiler, libc, ..) needs to be specified as input
• The OCaml compiler and runtime are reproducible, MirageOS unikernels mostly
• reproducible-builds.org
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Call for help: how to destroy a BHyve VM?

• Currently we use sysctl "hw.vmm.destroy" in atexit
• Requires root privileges :|
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Call for help: how to protect memory (W ˆ X)

• We mmap memory in the host system process
• And mprotect to set the protection bits
• The guest mapping is not changed by this (still writable and executable)
• https://github.com/Solo5/solo5/issues/303
• We are keen to test any solution (different syscall, ..)
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Testing and formal verification

• Unit testing, quickcheck, fuzz-based testing
• Model checking with TLA+ was used for libraries
• Interactive proof assistant Coq generates OCaml code
• Dependently typed Agda generates OCaml code
• CFML is a proof system specifically for OCaml
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Community

• Research at University of Cambridge since
2008 (ongoing student projects, etc.)

• Bi-annual hack retreats since 2016 (7 days,
~35 participants, next September 23rd -
28th)

• Dogfooding our unikernels (DHCP, DNS)
• Open source contributors worldwide
• Docker for Mac and Docker for Windows
use MirageOS libraries

• Running 15 unikernels on my servers since
a year (DNS, Webserver, CalDAV)
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.

Rome ne s’est pas faite en un jour (Rome wasn’t built in a day)

Li Proverbe au Vilain, around 1190
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Conclusion

• Radical approach to operating system development
• Security from the ground up
• Reduced complexity
• Reasonable performance
• Boots in milliseconds
• Permissively licensed (BSD/MIT)
• More information at mirage.io
• We at robur.io provide commercial MirageOS development as non-profit company
• Contact me: EMail hannes@mehnert.org
• Mastodon: hannesm@mastodon.social
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Selected related talks

• At FOSDEM 2019 about Solo5 by Martin Lucina
https://fosdem.org/2019/schedule/event/solo5_unikernels/

• At 34C3 (2017) by Mindy Preston
https://media.ccc.de/v/34c3-8949-library_operating_systems

• At Lambda World 2018 by Romain Calascibetta
https://www.youtube.com/watch?v=urG5BjvjW18

• At Esper (2015) by Anil Madhavapeddy
https://www.youtube.com/watch?v=bC7rTUEZfmI
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