
MirageOS: minimizing the attack surface and vectors of network
services

Hannes Mehnert, robur.io, hannesm@mastodon.social

BSDCan, 18th May 2019, Ottawa

1 / 37

About me

• Hacker interested in communication infrastructure, network and security protocols
• Using FreeBSD since 4.6
• Academic research on formal verification, programming language semantics,
security

• PhD (2013, ITU Copenhagen) incremental verification of the correctness of
object-oriented software using Coq and higher-order separation logic

• PostDoc (2014-2017) at University of Cambridge: MirageOS and formal model of
TCP/IP and the Unix Sockets API in HOL4

• 2018 started a non-profit robur.io in Berlin with the goal to deploy MirageOS
• Running my own communication infrastructure (eMail, DNS, ..) since ~2000

2 / 37

Motivation

Memory corruption issues are the root-cause of 68% of listed CVEs.

Ben Hawkes analysed 108 CVE since start of Google’s Project Zero in 2014, 0day "In
the Wild" https://googleprojectzero.blogspot.com/p/0day.html (published
2019-05-15)

3 / 37

https://googleprojectzero.blogspot.com/p/0day.html

Stack

SchedulerFile system

Process
Management

Network

Hardware
Drivers

User
Management

Hardware (CPU, disk, NIC, memory)

System calls, Sockets API

System libraries (libc)

Programming language runtime

Application Binary

Crypto (libssl)

Configuration Files • Common Unix applications depend
on shared libraries, their
configuration files.

• Reproducing one application on a
separate computer requires all
these artifacts.

• Kernel isolates processes from
each other.

• Compromise is contained to a
single process.

• Escalation by flaws in the system
call API (568 in sys/syscall.h)

4 / 37

.

5 / 37

Hypervisor stack

SchedulerFile system

Process
Management

Network

Hardware
Drivers

User
Management

Hardware (CPU, disk, NIC, memory)

System calls, Sockets API

System libraries (libc)

Programming language runtime

Application Binary

Crypto (libssl)

Configuration Files

Hypervisor
- Resource management

- Scheduling of VMs

Emulated Hardware and assigned resources

vmm.ko

Kernel

• The hypervisor manages the
physical machine and assigns
resources to virtual machines.
Hardware is emulated.

• Scheduling at every layer
• Hypervisor isolates virtual
machines from each other

6 / 37

MirageOS unikernel - library operating system

Hardware (CPU, disk, NIC, memory)

Hypervisor
- Resource management

- Scheduling of VMs

Emulated Hardware and assigned resources

Network stack

 OCaml runtime

Application code

Other OCaml
libraries

Cooperative Tasks

vmm.ko

Kernel

• Each MirageOS unikernel is a separate
virtual machine

• Each is tailored for its single service at
compilation time

• Using OCaml libraries
• Single address space
• Single core
• Programming language guarantees memory
safety

• Cooperative tasks (no interrupts)

7 / 37

MirageOS Hypervisor integration

SchedulerFile system

Process
Management

Network

Hardware
Drivers

User
Management

System calls, Sockets API

Hypervisor
- Resource management

- Scheduling of VMs

vmm.ko

bhyve/load/ctl vmd/vmctlsolo5-hvt

VM VM

App App

MirageOS

Virtio Virtiohypercall

Hardware (CPU, disk, NIC, memory)

• Custom solo5-hvt monitor process
• Less than 3000 lines of code
• Sets up memory, loads statically linked ELF
binary, sets up VCPU

• Boot: jmp 0x100000 (passing command
line arguments)

• Hypercalls: block device (read, write, info),
network device (read, write, info)

• Console write, wall clock, monotonic clock,
abort, exit, yield

8 / 37

Virtual Machine in detail

OCaml runtime

lwt

solo5-hvt

Hypercalls

libmnolibc

TCP/IP

net-solo5

crypto

ASN.1

X.509

TLSRNG

libgmp

Application code

• nolibc: dtoa, dlmalloc, strcmp,
strlen: ~8000 lines C (6200 malloc)

• libm: openlibm (FreeBSD libm repackaged
by Julialang) ~22000 lines C

• OCaml runtime: ~25000 lines C

9 / 37

.

Perfection is achieved, not when there is nothing more to add, but when there
is nothing left to take away.

Antoine de Saint-Exupery (1900 - 1944)

10 / 37

OCaml

• Multi-paradigm memory-managed programming language
• Expressive type system with type inference
• Strong type system, no downcasts or pointer arithmetics
• Unique module system
• Compiles to native machine code, types are erased during compilation
• Used by industry and academia for proof assistants, compilers
• Developed since more than 25 years at INRIA

11 / 37

MirageOS OCaml style

• No objects
• Immutable data as much as sensible
• Value passing style: state and data in, state and reply out
• Errors are explicitly declared in the API, no exceptions
• Concurrent programming with promises using the lwt library
• Declarative code - easy to understand and reason about
• Expressing invariants (e.g. read-only buffer) in the type system

12 / 37

Example: MirageOS CLOCK interface

module type PCLOCK = sig
val now_d_ps : unit -> int * int64
(** [now_d_ps ()] is [(d, ps)] representing the POSIX time occuring

at [d] * 86’400e12 + [ps] POSIX picoseconds from the epoch
1970-01-01 00:00:00 UTC. [ps] is in the range
[0;86_399_999_999_999_999L]. *)

end

• Implementation depends on target
• On Unix gettimeofday is used
• On hypervisors the CPU instruction RDTSC is used

13 / 37

Example: Interfaces and implementation

• As MirageOS unikernel
developer, you program
against the interface!

• Write once, run anywhere ;)

module Main (T : TIME) (P : PCLOCK) = struct
let start _time _pclock =
let rec speak () =
let now = Ptime.v (P.now_d_ps ()) in
let pp_ts = Ptime.pp_rfc3339 () in
Format.printf "It is %a\n%!" pp_ts now;
T.sleep_ns (Duration.of_sec 1) >>= fun () ->
speak ()

in
speak ()

end

14 / 37

Example: Running a unikernel

$ mirage configure #configures (defaults to Unix target)
$ make depend #installs necessary dependencies
$ mirage build #compiles the unikernel, producing an ELF executable
$./speaking_clock #executes it

$ mirage configure -t hvt #configures for Hardware Virtualized Tender
$ make depend #installs necessary dependencies
$ mirage build #compiles, output: monitor (solo5-hvt) and VM image (.hvt)
$./solo5-hvt speaking_clock.hvt #executes it

15 / 37

Supported MirageOS targets

• Unix binary (development and testing)
• Architectures: x86-64, arm64, ESP32, soon RISC-V
• Hypervisor: Xen, KVM, FreeBSD BHyve, OpenBSD VMM, Virtio
• Muen separation kernel (Ada/SPARK)
• Genode operating system framework (Nova microkernel, L4)
• Linux binary with strict seccomp filters

16 / 37

Unikernel: Bitcoin Piñata

17 / 37

Unikernel: Bitcoin Piñata

• Marketing of our from-scratch TLS
implementation

• Transparent and self-serving security bait
• Web server which contains a private key for
a Bitcoin wallet

• If a peer authenticates (using TLS and
client certificates), it sends the private key

• Online since February 2015
• Contained 10 BTC until March 2018

18 / 37

Trusted computing base - Bitcoin Piñata

19 / 37

Performance of nqsb-TLS (2015, on a laptop)

• Throughput

• Handshakes (number per second)

nqsb OpenSSL Polar
RSA 698 723 672
DHE-RSA 601 515 367

20 / 37

MirageOS libraries

21 / 37

Monitoring

22 / 37

Unikernel: DNS server

• Replies to DNS requests on port 53
• Zone data as a trie is kept in memory
• Storage in a git remote in zone file format
• Configuration (ip address, git remote, syslog, ..) via boot arguments
• No block device

• Git pre-commit hook validates changes: SOA was increased, . . .
• Git post-commit hook notifies (RFC 1996)

• TSIG support HMAC-authentication - RFC 2845
• Modification also via (authenticated) nsupdate (RFC 2136)
• Successful nsupdate implies a git push to the repository

• Secondaries are notified on update, and start zone transfer (AXFR/IXFR)
• VM image size roughly 8MB (including IP stack, DNS, git)

23 / 37

Unikernel: DNS server

• Replies to DNS requests on port 53
• Zone data as a trie is kept in memory
• Storage in a git remote in zone file format
• Configuration (ip address, git remote, syslog, ..) via boot arguments
• No block device

• Git pre-commit hook validates changes: SOA was increased, . . .
• Git post-commit hook notifies (RFC 1996)

• TSIG support HMAC-authentication - RFC 2845
• Modification also via (authenticated) nsupdate (RFC 2136)
• Successful nsupdate implies a git push to the repository

• Secondaries are notified on update, and start zone transfer (AXFR/IXFR)
• VM image size roughly 8MB (including IP stack, DNS, git)

24 / 37

Unikernel: DNS server

• Replies to DNS requests on port 53
• Zone data as a trie is kept in memory
• Storage in a git remote in zone file format
• Configuration (ip address, git remote, syslog, ..) via boot arguments
• No block device

• Git pre-commit hook validates changes: SOA was increased, . . .
• Git post-commit hook notifies (RFC 1996)

• TSIG support HMAC-authentication - RFC 2845
• Modification also via (authenticated) nsupdate (RFC 2136)
• Successful nsupdate implies a git push to the repository

• Secondaries are notified on update, and start zone transfer (AXFR/IXFR)
• VM image size roughly 8MB (including IP stack, DNS, git)

25 / 37

Unikernel: DNS server

• Replies to DNS requests on port 53
• Zone data as a trie is kept in memory
• Storage in a git remote in zone file format
• Configuration (ip address, git remote, syslog, ..) via boot arguments
• No block device

• Git pre-commit hook validates changes: SOA was increased, . . .
• Git post-commit hook notifies (RFC 1996)

• TSIG support HMAC-authentication - RFC 2845
• Modification also via (authenticated) nsupdate (RFC 2136)
• Successful nsupdate implies a git push to the repository

• Secondaries are notified on update, and start zone transfer (AXFR/IXFR)
• VM image size roughly 8MB (including IP stack, DNS, git)

26 / 37

Existing MirageOS unikernels

• Various web sites including mirage.io and nqsb.io
• Content management system Canopy that serves Markdown files from a git remote
• OpenVPN client (work in progress)
• QubesOS firewall (run-time rule changes under development)
• CalDAV server (test deployment since November 2018)
• DNS server (primary, secondary, let’s encrypt certificate issuance)
• DNS resolver (work in progress)
• DHCP server
• SMTP server (work in progress)
• Albatross orchestration system, deploying unikernels via TLS handshake (client
certs)

27 / 37

https://mirage.io
https://nqsb.io

Security

• Minimized attack surface
• Avoiding common attack vectors, such as memory corruptions
• Defense in depth (in progress): W ˆ X mapping (Linux only), stack guard, ASLR
• Formal verification on the horizon
• Supply chain: signed library releases, reproducible builds

28 / 37

Signed library releases (wip)

• Library authors sign their releases
• A quorum of repository maintainers delegates packages to authors
• Impact of a private key compromise or loss is contained to their packages
• If a quorum of maintainers is compromised, game over
• Rollback, mix-and-match attacks mitigated by snapshot service
• Freeze, slow retrieval attacks mitigated by timestamp service
• Using update framework (Cappos NYU) with augmentation proposal TAP8

29 / 37

Reproducible builds

• Simple idea: compiling the source should produce identical output
• Temporary files names, timestamps, build path are problematic
• Environment (C compiler, libc, ..) needs to be specified as input
• The OCaml compiler and runtime are reproducible, MirageOS unikernels mostly
• reproducible-builds.org

30 / 37

https://reproducible-builds.org/

Call for help: how to destroy a BHyve VM?

• Currently we use sysctl "hw.vmm.destroy" in atexit
• Requires root privileges :|

31 / 37

Call for help: how to protect memory (W ˆ X)

• We mmap memory in the host system process
• And mprotect to set the protection bits
• The guest mapping is not changed by this (still writable and executable)
• https://github.com/Solo5/solo5/issues/303
• We are keen to test any solution (different syscall, ..)

32 / 37

https://github.com/Solo5/solo5/issues/303

Testing and formal verification

• Unit testing, quickcheck, fuzz-based testing
• Model checking with TLA+ was used for libraries
• Interactive proof assistant Coq generates OCaml code
• Dependently typed Agda generates OCaml code
• CFML is a proof system specifically for OCaml

33 / 37

Community

• Research at University of Cambridge since
2008 (ongoing student projects, etc.)

• Bi-annual hack retreats since 2016 (7 days,
~35 participants, next September 23rd -
28th)

• Dogfooding our unikernels (DHCP, DNS)
• Open source contributors worldwide
• Docker for Mac and Docker for Windows
use MirageOS libraries

• Running 15 unikernels on my servers since
a year (DNS, Webserver, CalDAV)

34 / 37

.

Rome ne s’est pas faite en un jour (Rome wasn’t built in a day)

Li Proverbe au Vilain, around 1190

35 / 37

Conclusion

• Radical approach to operating system development
• Security from the ground up
• Reduced complexity
• Reasonable performance
• Boots in milliseconds
• Permissively licensed (BSD/MIT)
• More information at mirage.io
• We at robur.io provide commercial MirageOS development as non-profit company
• Contact me: EMail hannes@mehnert.org
• Mastodon: hannesm@mastodon.social

36 / 37

https://mirage.io
https://robur.io

Selected related talks

• At FOSDEM 2019 about Solo5 by Martin Lucina
https://fosdem.org/2019/schedule/event/solo5_unikernels/

• At 34C3 (2017) by Mindy Preston
https://media.ccc.de/v/34c3-8949-library_operating_systems

• At Lambda World 2018 by Romain Calascibetta
https://www.youtube.com/watch?v=urG5BjvjW18

• At Esper (2015) by Anil Madhavapeddy
https://www.youtube.com/watch?v=bC7rTUEZfmI

37 / 37

https://fosdem.org/2019/schedule/event/solo5_unikernels/
https://media.ccc.de/v/34c3-8949-library_operating_systems
https://www.youtube.com/watch?v=urG5BjvjW18
https://www.youtube.com/watch?v=bC7rTUEZfmI

