Fuzzing the kernel

Andrew Turner

andrew@FreeBSD.org

Who am |?

* FreeBSD Committer (andrew@)
e Research Associate in the University of Cambridge
* Sometimes a Freelance Software Engineer

Sanitizers

Sanitizers

* A tool from the compiler to instrument code

* Add function calls on in interesting points in the code, e.g.:
* Entry to a basic block
* On comparison operations
* Every memory access

* The compiler provides a runtime for userspace
* We need our own runtime in the kernel

Undefined Behaviour

KUBSAN — Undefined Behaviour Sanitizer

* Instruments code that may be undefined depending on input, e.g.

* Misaligned or NULL pointer
 Shift out of bounds

* From the NetBSD pUBsan
* imported 3 August 2018

* Imported into FreeBSD 6 November 2018

e Off by default (large increase in kernel file size)

* Imported into OpenBSD 18 March 2019

KUBSAN Reports

* Misalighed memory access:

* UBSan: Undefined Behavior in .../sys/vm/uma_core.c:1746:8, member access
within misaligned address Oxfffff8087ffde7c0 for type 'struct uma_zone'
which requires 128 byte alignment

* NULL pointer dereference:
e UBSan: Undefined Behavior in .../sys/contrib/ck/src/ck_epoch.c:143:1,
member access within null pointer of type 'struct ck_epoch_record’

e Shift out of bounds:

e UBSan: Undefined Behavior in
.../sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_label.c:410:14, shift
exponent 64 is too large for 64-bit type 'unsigned long long'

Coverage

KCOV — Coverage Sanitizer

* Coverage sanitizer

* Inserts function calls to trace:
 The start of basic blocks
* On comparison operations

* Comparison tracing includes values being compared
* Useful for finding what input data to try changing

 Committed to:
* OpenBSD on 19 August 2018
* FreeBSD on 12 January 2019
 NetBSD on 23 February 2019

KCOV — PC Tracing

___—

Oxffffffff81595cf0 Oxffffffff8155c2f0 Oxffffffff8155ccb0

e Starts with the number of entries

e Each entry contains an address in the basic block
* Probably the return address of the inserted function

e Each field is:

* uintptr_t on OpenBSD
* uint64 t on FreeBSD and NetBSD (as kcov _int_t)

KCOV — Comparison Tracing
mm-mm-_

0x10 0x20 Oxfffffff... Ox7 Ox8080 0x8080 Oxfffffff...

e Starts with the number of entries

* Each entry contains:
* A comparison type — encodes width and if comparing with a const
* Two arguments

* An address near the comparison
* Probably the return address of the inserted function

e Each field is:

* uintptr_t on OpenBSD
e uint64_t on FreeBSD and NetBSD (as kcov_int_t)

KCOV — User interface

User opens /dev/kcov
Sets the buffer size with an ioctl
mmaps the buffer

Enables tracing within the thread being traces
* May not be the same thread (or process) as opened the device

Zeros the first entry in the buffer
Runs the traced operations
Disables tracing

May repeat from 4

Unmaps the buffer

10 Closes the device

BN e

© 0 N O U

Address Space

KASAN — Address Space Sanitizer

* Checks memory accesses are in bounds

* Uses a shadow map to mark valid memory
* 1 shadow byte for each 8 bytes

e Can mark the first 1-8 bytes as valid
* Must be contiguous

* Can mark all bytes as invalid
* Includes data on why, e.g. stack padding

KASAN — Address Space Sanitizer

1 byte in the shadow
map (signed)

N

N>0,eg.N=3

-------- me e

Valid memory:

KASAN — Address Space Sanitizer

 All allocations are now alignhed to at least an 8 byte boundary

* Allocations are rounded up to an 8 byte boundary
* Memory past the end of the allocation is marked as unusable

* One of more 8 byte blocks of unusable memory after the allocation

KASAN — Example

void get_data(int *output, size t count);

int example(void) {
int ret, *data = malloc(sizeof(int), M_TEMP, M_WAITOK);

get data(data, 1);
ret = *data;

free(data, M_TEMP);
return (ret);

KASAN — Example

Allocation {,

B 15 lw lu Jn i w5

o1 2 3 4 5 6 7

* Allocated 4 bytes

* Aligned data to an 8 byte boundary
* Padded to 8 bytes

* Allocated 8 bytes of invalid data

KASAN — Example

Allocation ¢, Shadow map -

o1 2 3 4 5 6 7

* Allocated up to 8 bytes
* Padded up to 8 bytes
* 8 bytes of padding after the allocation

OxFF

0x04

KASAN — Example

Allocation ¢, Shadow map -

o1 2 3 4 5 6 7

* A load or store that includes bytes 4-15 will be detected
e Can warn with printf or panic

* A load or store past byte 15 may or may not be detected
* It depends on if it has been allocated

OxFF

0x04

KASAN — Example

void get_data(int *output, size t count);

int example(void) {
int ret, *data = malloc(sizeof(int), M_TEMP, M_WAITOK);

get data(data, 1);
ret = data[1]; /* Out of bounds: access past the end of data */

free(data, M_TEMP);
return (ret);

KASAN

* Committed to NetBSD 20 August 2018
* FreeBSD has a Google Summer of Code student working on it

KHWASAN — Hardware Assisted ASAN

* An arm64 specific extension

* Enable Top Byte Ignore in the kernel
* The top 8 bits of a pointer are ignored

* Store an 8 bit tag in the top byte
* One tagis reserved for free memory

 Store the same tag in the shadow map

* Allocate random tags when allocating memory

KHWASAN — Example

Initial state

. First allocation More allocations
No allocations

o

Load from location 3 ARRET
with a blue pointer
STOP

D

_

Invalid pointer
colour

| > OO INIO N | PHPIW[IN|F

W > O|IO0OINIO| UL |W

| >|LO |0 |

KHWASAN — Hardware Assisted ASAN

* The shadow map is 1 byte per 16 allocated bytes
* Allocations are 16 byte aligned and sized

* Not able to detect slightly out of bounds access
* Within a 16 byte block

e Can probabilistically detect larger out of bounds access of allocated
memory
 Just under 1/256 probability of an incorrect tag match

CHERI

* Add bounds and permissions to pointers to create capabilities
e Capabilities are non-forgeable
e Can only reduce bounds and permissions

e Capabilities can only be derived from other capabilities
* At least one will be provided to the kernel on boot

* With CheriABI all pointers are capabilities
e See Brooks’ talk tomorrow for more information

CHERI

e CHERI with CheriABI can detect all out-of-bounds access
* Not just slightly out of bounds like KASAN
* No tag collision like KHWASAN

* Research on narrowing bounds more
* Stopping buffer overflows for variables within a struct

Memory

KMSAN — Memory Sanitizer

* Checks use of uninitialized values in the kernel

e Use is defined as:
e Conditionals
* Pointer dereference
* Copied to userspace

KMSAN — Memory Sanitizer

int a;
int b=a; /* Not a use */

copyout(&b, u, sizeof(b)); /* An uninit use */

KMSAN — Memory Sanitizer

int a;

if (flag)
a=1;
c=a+b; /*Notauseofa?*/
if (flag)
copyout(&c, u, sizeof(c)); /* A use, don’t report */

KMSAN — Memory Sanitizer

struct config *example(void)

{
struct config *conf;
conf = malloc(sizeof(*conf), M_TEMP, M_WAITOK);
init_config(conf);

}

void init_conf(struct config *conf)

{

if (conf->flag !=0) /* An uninit use */
do_something();

KMSAN — Memory Sanitizer

* As with KASAN it uses a shadow map
* 1 bit per byte

* Set when poisoned (uninitialized)
* Memory is poisoned by default
* malloc(9) will unpoison memory with M_ZERO
* Writing a constant unpoisons memory
e Shadow state is propagated

KLEAK — NetBSD memory leak detector

 Similar in concept to KMSAN
* Find copying uninitialized memory to userspace
* Uses in-band sighalling
* Use a magic value, then check for it when copying to userspace

* Uses the coverage sanitizer instrumentalization to poison the stack

* Prone to false positives
* In-band value may be legitimately in the data
* Cleaver choice of value to reduce this chance

Threading

KTSAN — Thread Sanitizer

* Find data races

e Still a work in progress by Google in Linux
* May be on hold

Why add Kernel Sanitizers?

Why add Kernel Sanitizers?

* Find and fix more bugs
e KCOV allows kernel fuzzing
* Improves fuzzing by making bugs easier to find

Syzkaller

* A system call fuzzer from Google
* Supports many kernels including FreeBSD, NetBSD, and OpenBSD
* Finds new ways to panic the kernel from userspace

* Google hosts an instance on their infrastructure

sign-in | mailing list | source | docs

syzbot

FreeBSD

fixed bugs (16)

Instances:
Name Active Uptime Corpus Coverage Crashes Execs Kernel build syzkaller build
Commit Freshness Status Commit Freshness Status
ci-freebsd-main now 5h46m 8936 81982 137 1563723 85eaade9 13h46m 2755003a 9d02h
upstream (47):

Title Repro Bisected Count Last Reported
panic: inp leave group: imf sources not empty (2) syz 2 2h31lm 3h01m
Fatal trap 12: page fault in uma dbg free 1 1d05h 1d05h
panic: Duplicate free of ADDR from zone ADDR(16) slab ADDR(241) 1 1dléh 1dléh
Fatal trap 12: page faultin mtx assert (2) 1 1d18h 1d18h
Fatal trap 9: general protection fault in sys nlm syscall 2 2d03h 4d22h
Fatal trap 12: page fault in fifo close 17 17h43m 5d15h
panic: Assertion lock == sq->sq lock failed at /syzkaller/managers/m... 1 6d03h 6d03h
panic: Memory modified after free ADDR(256) val=0 @ ADDR syz 4 1d405h 6dllh
Fatal trap 12: page fault in uma dbg alloc 1 6d12h 6d12h
panic: mtx lock() of destroyed mutex at sys/kern/sys socket.c:LINE syz 1 6d19h 6d19h
panic: mtx lock() of spin mutex (null) @ /syzkaller/managers/main/k... 1 6d19h 6d19h
Fatal trap 12: page fault in link elf search symbol 1 7d00h 7d00h
Fatal trap 12: page fault in ip output 2 6dl4h 7d13h
panic: Most recently used by temp 4 3d12h 7d23h
panic: Bad tailg NEXT(ADDR->tgh last) != NULL 1 8d10h 8d10h
panic: Most recently used by tty Syz 11 4400h 9d00h
1 11d 11d

panic: Most recently used by ip6opt

sign-in | mailing list | source | docs

syzbot

Linux
fixed bugs (1240)
Instances:
Name Active Uptime Corpus Coverage Crashes Execs Kernel build syzkaller build
Commit Freshness Status Commit Freshness Status
ci-upstream-bpf-kasan-gce now 1h53m 10023 284396 163 2141078 d72386fe 1d08h 95d£fd515 2h21m
ci-upstream-bpf-next-kasan-gce now 1h53m 10406 287727 249 2742186 35c99ffa 2d15h 95d£fd515 2h21m
ci-upstream-gce-leak now 24m 11460 330887 11 87189 a6a4b66b 10h06m 95d£fd515 2h21m
ci-upstream-kasan-gce now 39m 72945 4602079 466 912856 a6adb66b 10h06m 95d£fd515 2h21m
ci-upstream-kasan-gce-386 now 57m 22792 430747 14 1914041 a6adb66b 10h06m 95d£fd515 2h21m
ci-upstream-kasan-gce-root now 14m 74600 4827346 440 892084 a6a4b66b 10h06m 95d£d515 2h21m
ci-upstream-kasan-gce-selinux-root now 30m 73966 4668186 282 1229467 a6adb6bb 10h06m 95d£d515 2h21m
ci-upstream-kasan-gce-smack-root now 48m 72906 5032570 236 1588729 a6adb66b 10h06m 95d£fd515 2h21m
ci-upstream-kmsan-gce now 1h07m 56237 3125847 614 465976 2b5lall4 4h01m 95d£fd515 2h21m
ci-upstream-linux-next-kasan-gce-root now 1h53m 72275 5189609 156 1956910 bld6682e 8h1l4m 95d£d515 2h21m
ci-upstream-net-kasan-gce now 1h53m 19059 429673 49 4444259 35c99ffa 2d15h 95d£fd515 2h21m
ci-upstream-net-this-kasan-gce now 1h53m 17762 409496 36 3111905 510e2ced 15h46m 95d£fd515 2h21m
ci2-upstream-usb now 5h28m 770 32489 466 747197 43151d6c 580d 2755003a 9d02h
open (505):
Title Repro Bisected Count Last Reported
general protection fault in ext4 mb initialize context 3 18d 1d01h
KASAN: use-after-free Write in xfrm hash rebuild 1 7d05h 1d01h
KASAN: use-after-free Write in _ xfrm policy unlink (2) 2 4d09h 1d01lh
WARNING: locking bug in inet autobind 1 1dl1h 1d06h
1 4d21h 1d06h

WARNING: locking bug in udpv6 pre connect

Syzkaller

* Will combine system calls to try finding new paths through the kernel

* Understands arguments
* E.g. read takes a file description, a pointer, and a length

* Will try to mix syscalls in interesting ways
* Pass a socket into something that doesn’t take a socket

* Very good at panicking the kernel
* Will try to find a reproducer
* Adding a sanitizer makes it easier to find memory issues

syzbot

FreeBSD

panic: ffs_blkfree_cg: freeing free block

Status: fixed on 2019/04/29 23:55

Reported-by: syzbot+36fd786cb3ab88f18cOb@syzkaller.appspotmail.com
Fix commit: a7a455c2 Optimize lseek(SEEK DATA) on UFS.

First crash: 60d, last: 60d

Kernel Title Repro
freebsd panic: ffs blkfree cg: freeing free block (2)

Sample crash report:

similar bugs (1):
Bisected Count Last
1 17d

Reported
17d

Patched
0/1

sign-in | mailing list | source | docs

Status

upstream: reported on 2019/04/30 12:16

panic: ffs blkfree cg: freeing free block

cpuid = 0

time = 1552872502

KDB: stack backtrace:

db_trace_self wrapper() at db_trace_self wrapper+0x47/frame Oxfffffe0020dfcl50
vpanic() at vpanic+0xleO/frame O0xfffffe0020dfclb0

panic() at panic+0x43/frame Oxfffffe0020dfc210

ffs_blkfree cg() at ffs_blkfree cg+0x6e9/frame Oxfffffe0020dfc2d0
ffs_blkfree() at ffs_blkfree+0xl5e/frame Oxfffffe0020dfc350
ffs_indirtrunc() at ffs_indirtrunc+0x724/frame Oxfffffe0020dfc450
ffs_indirtrunc() at ffs_indirtrunc+0x856/frame Oxfffffe0020dfc530
ffs_truncate() at ffs_truncate+0xl7c3/frame Oxfffffe0020dfc720
ufs_setattr() at ufs_setattr+0x918/frame O0xfffffe0020dfc7cO
VOP_SETATTR_APV() at VOP_SETATTR APV+0xc2/frame Oxfffffe0020dfc7£0
vn_truncate() at vn_truncate+0x23f/frame O0xfffffe0020dfc930
kern_ftruncate() at kern_ ftruncate+0xl1l3b/frame Oxfffffe0020dfc980
amd64_syscall() at amd64_syscall+0x436/frame Oxfffffe0020dfcab0

fast syscall common() at fast syscall common+0x101/frame Oxfffffe0020dfcab0

KDB: enter: panic
[thread pid 762 tid 100093]

--- syscall (0, FreeBSD ELF64, nosys), rip = 0x42132a, rsp = 0x7fffffffea88, rbp = 0x2 ---

Stopped at kdb_enter+0x6a: movg $0,kdb_why
4
All crashes (5):
Manager Time Kernel Commit Syzkaller Config Log Report Syzrepro C repro
ci-freebsd-main 2019/03/18 01:31 = freebsd 8bl7fbc2 | £8757044 log report @ syz C
ci-freebsd-main 2019/03/18 01:14 freebsd SOLEOCZ /57041 log report
ci-freebsd-main 2019/03/18 05:00 freebsd 8bl7fbc2 | £8757044 log report

Syzkaller

* Emails a per-project mailing list with new issues
* Fixes should be tagged in the commit
* Will check the issue is fixed

* Join the appropriate list if you care about kernel quality

AFL — American Fuzzy Lop

* A file format fuzzer
* Can change a file and see if any new paths are found

* Test patches for KCOV to support AFL
* Before starting clear the buffer

* On each basic block:

* Calculate (hash(old_ptr) A hash(new_ptr)) % buffer_length
* Increment this entry

e Patched AFL to talk to kcov

AFL — Fuzzing UFS

* Tried fuzzing a 128K UFS image
* Just mount and unmount the image

* Very slow
* ~60 mounts/second
* Around 12 days to try all single bitflips

Conclusion

Conclusion — Sanitizers

* FreeBSD, NetBSD, and OpenBSD have KCOV and KUBSAN
* NetBSD has KASAN, with it planned for FreeBSD
e Other sanitizers need work

* Will make bugs easier to find

Conclusion — Fuzzing

* Google runs a syscall fuzzer on FreeBSD, NetBSD, and OpenBSD
* Look through the reports & fix the code
* AFL may be useful in the future, but currently is too slow

Questions?

