
Fuzzing the kernel
Andrew Turner

andrew@FreeBSD.org



Who am I?

• FreeBSD Committer (andrew@)
• Research Associate in the University of Cambridge
• Sometimes a Freelance Software Engineer



Sanitizers



Sanitizers

• A tool from the compiler to instrument code
• Add function calls on in interesting points in the code, e.g.:
• Entry to a basic block
• On comparison operations
• Every memory access

• The compiler provides a runtime for userspace
• We need our own runtime in the kernel



Undefined Behaviour



KUBSAN – Undefined Behaviour Sanitizer

• Instruments code that may be undefined depending on input, e.g.
• Misaligned or NULL pointer
• Shift out of bounds

• From the NetBSD µUBsan
• imported 3 August 2018

• Imported into FreeBSD 6 November 2018
• Off by default (large increase in kernel file size)

• Imported into OpenBSD 18 March 2019



KUBSAN Reports

• Misaligned memory access:
• UBSan: Undefined Behavior in …/sys/vm/uma_core.c:1746:8, member access 

within misaligned address 0xfffff8087ffde7c0 for type 'struct uma_zone' 
which requires 128 byte alignment

• NULL pointer dereference:
• UBSan: Undefined Behavior in …/sys/contrib/ck/src/ck_epoch.c:143:1, 

member access within null pointer of type 'struct ck_epoch_record’
• Shift out of bounds:
• UBSan: Undefined Behavior in 

…/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_label.c:410:14, shift 
exponent 64 is too large for 64-bit type 'unsigned long long'



Coverage



KCOV – Coverage Sanitizer

• Coverage sanitizer
• Inserts function calls to trace:
• The start of basic blocks
• On comparison operations

• Comparison tracing includes values being compared
• Useful for finding what input data to try changing

• Committed to:
• OpenBSD on 19 August 2018
• FreeBSD on 12 January 2019
• NetBSD on 23 February 2019



KCOV – PC Tracing

Count PC PC PC …
348 0xffffffff81595cf0 0xffffffff8155c2f0 0xffffffff8155ccb0 …

• Starts with the number of entries
• Each entry contains an address in the basic block
• Probably the return address of the inserted function

• Each field is:
• uintptr_t on OpenBSD
• uint64_t on FreeBSD and NetBSD (as kcov_int_t)



KCOV – Comparison Tracing

Count Type Arg Arg PC Type Arg Arg PC …
348 0x2 0x10 0x20 0xfffffff… 0x7 0x8080 0x8080 0xfffffff… …

• Starts with the number of entries
• Each entry contains:

• A comparison type – encodes width and if comparing with a const
• Two arguments
• An address near the comparison

• Probably the return address of the inserted function

• Each field is:
• uintptr_t on OpenBSD
• uint64_t on FreeBSD and NetBSD (as kcov_int_t)



KCOV – User interface 

1. User opens /dev/kcov
2. Sets the buffer size with an ioctl
3. mmaps the buffer
4. Enables tracing within the thread being traces

• May not be the same thread (or process) as opened the device
5. Zeros the first entry in the buffer
6. Runs the traced operations
7. Disables tracing
8. May repeat from 4
9. Unmaps the buffer
10. Closes the device



Address Space



KASAN – Address Space Sanitizer

• Checks memory accesses are in bounds
• Uses a shadow map to mark valid memory
• 1 shadow byte for each 8 bytes

• Can mark the first 1-8 bytes as valid
• Must be contiguous

• Can mark all bytes as invalid
• Includes data on why, e.g. stack padding



KASAN – Address Space Sanitizer

N = 0

N < 0

N > 0, e.g. N = 3
Valid memory:

Invalid memory:

N

1 byte in the shadow 
map (signed)



KASAN – Address Space Sanitizer

• All allocations are now aligned to at least an 8 byte boundary
• Allocations are rounded up to an 8 byte boundary
• Memory past the end of the allocation is marked as unusable

• One of more 8 byte blocks of unusable memory after the allocation



KASAN – Example

void get_data(int *output, size_t count);

int example(void) {
int ret, *data = malloc(sizeof(int), M_TEMP, M_WAITOK);

get_data(data, 1);
ret = *data;

free(data, M_TEMP);
return (ret);

}



KASAN – Example

• Allocated 4 bytes
• Aligned data to an 8 byte boundary
• Padded to 8 bytes
• Allocated 8 bytes of invalid data 

8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7

Allocation ↓



KASAN – Example

• Allocated up to 8 bytes
• Padded up to 8 bytes
• 8 bytes of padding after the allocation

Allocation ↓ …
0xFF
0x04
...

Shadow map →
8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7



KASAN – Example

• A load or store that includes bytes 4-15 will be detected
• Can warn with printf or panic

• A load or store past byte 15 may or may not be detected
• It depends on if it has been allocated

Allocation ↓ …
0xFF
0x04
…

Shadow map →
8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7



KASAN – Example

void get_data(int *output, size_t count);

int example(void) {
int ret, *data = malloc(sizeof(int), M_TEMP, M_WAITOK);

get_data(data, 1);
ret = data[1]; /* Out of bounds: access past the end of data */

free(data, M_TEMP);
return (ret);

}



KASAN

• Committed to NetBSD 20 August 2018
• FreeBSD has a Google Summer of Code student working on it



KHWASAN – Hardware Assisted ASAN

• An arm64 specific extension
• Enable Top Byte Ignore in the kernel
• The top 8 bits of a pointer are ignored

• Store an 8 bit tag in the top byte
• One tag is reserved for free memory

• Store the same tag in the shadow map
• Allocate random tags when allocating memory



KHWASAN – Example

0

1

2

3

4

5

6

7

8

9

A

B

0

1

2

3

4

5

6

7

8

9

A

B

0

1

2

3

4

5

6

7

8

9

A

B

Initial state
No allocations First allocation More allocations

Load from location 3 
with a blue pointer

ARRÊT
STOP

Invalid pointer 
colour



KHWASAN – Hardware Assisted ASAN

• The shadow map is 1 byte per 16 allocated bytes
• Allocations are 16 byte aligned and sized
• Not able to detect slightly out of bounds access
• Within a 16 byte block

• Can probabilistically detect larger out of bounds access of allocated 
memory
• Just under 1/256 probability of an incorrect tag match



CHERI

• Add bounds and permissions to pointers to create capabilities
• Capabilities are non-forgeable
• Can only reduce bounds and permissions
• Capabilities can only be derived from other capabilities
• At least one will be provided to the kernel on boot

• With CheriABI all pointers are capabilities
• See Brooks’ talk tomorrow for more information



CHERI

• CHERI with CheriABI can detect all out-of-bounds access
• Not just slightly out of bounds like KASAN
• No tag collision like KHWASAN

• Research on narrowing bounds more
• Stopping buffer overflows for variables within a struct



Memory



KMSAN – Memory Sanitizer

• Checks use of uninitialized values in the kernel
• Use is defined as:
• Conditionals
• Pointer dereference
• Copied to userspace



KMSAN – Memory Sanitizer

int a;
int b = a; /* Not a use */

copyout(&b, u, sizeof(b)); /* An uninit use */



KMSAN – Memory Sanitizer

int a;

if (flag)
a = 1;

c = a + b; /* Not a use of a */
if (flag)

copyout(&c, u, sizeof(c)); /* A use, don’t report */



KMSAN – Memory Sanitizer

struct config *example(void)
{

struct config *conf;

conf = malloc(sizeof(*conf), M_TEMP, M_WAITOK);
init_config(conf);

}
void init_conf(struct config *conf)
{

if (conf->flag != 0) /* An uninit use */
do_something();

}



KMSAN – Memory Sanitizer

• As with KASAN it uses a shadow map
• 1 bit per byte
• Set when poisoned (uninitialized)

• Memory is poisoned by default
• malloc(9) will unpoison memory with M_ZERO
• Writing a constant unpoisons memory
• Shadow state is propagated



KLEAK – NetBSD memory leak detector

• Similar in concept to KMSAN
• Find copying uninitialized memory to userspace

• Uses in-band signalling
• Use a magic value, then check for it when copying to userspace

• Uses the coverage sanitizer instrumentalization to poison the stack
• Prone to false positives
• In-band value may be legitimately in the data
• Cleaver choice of value to reduce this chance



Threading



KTSAN – Thread Sanitizer

• Find data races
• Still a work in progress by Google in Linux
• May be on hold



Why add Kernel Sanitizers?



Why add Kernel Sanitizers?

• Find and fix more bugs
• KCOV allows kernel fuzzing
• Improves fuzzing by making bugs easier to find



Syzkaller

• A system call fuzzer from Google
• Supports many kernels including FreeBSD, NetBSD, and OpenBSD
• Finds new ways to panic the kernel from userspace
• Google hosts an instance on their infrastructure







Syzkaller

• Will combine system calls to try finding new paths through the kernel
• Understands arguments
• E.g. read takes a file description, a pointer, and a length

• Will try to mix syscalls in interesting ways
• Pass a socket into something that doesn’t take a socket

• Very good at panicking the kernel
• Will try to find a reproducer
• Adding a sanitizer makes it easier to find memory issues





Syzkaller

• Emails a per-project mailing list with new issues
• Fixes should be tagged in the commit
• Will check the issue is fixed

• Join the appropriate list if you care about kernel quality



AFL – American Fuzzy Lop

• A file format fuzzer
• Can change a file and see if any new paths are found

• Test patches for KCOV to support AFL
• Before starting clear the buffer
• On each basic block:
• Calculate (hash(old_ptr) ^ hash(new_ptr)) % buffer_length
• Increment this entry

• Patched AFL to talk to kcov



AFL – Fuzzing UFS

• Tried fuzzing a 128K UFS image
• Just mount and unmount the image
• Very slow
• ~60 mounts/second
• Around 12 days to try all single bitflips



Conclusion



Conclusion – Sanitizers

• FreeBSD, NetBSD, and OpenBSD have KCOV and KUBSAN
• NetBSD has KASAN, with it planned for FreeBSD
• Other sanitizers need work
• Will make bugs easier to find



Conclusion – Fuzzing

• Google runs a syscall fuzzer on FreeBSD, NetBSD, and OpenBSD
• Look through the reports & fix the code
• AFL may be useful in the future, but currently is too slow



Questions?


