
Heart ticking for a guest running on FreeBSD
ARM hypervisor

Mihai Carabas
mihai@freebsd.org

BSDCan 2019
University of Ottawa

Ottawa, Canada
May 17 – 18, 2019

About me

I University POLITEHNICA of Bucharest
I PhD: virtualization on embedded devices
I Lector: operating systems, systems architecture, networks

I BSD world
I DragonFly BSD: SMT aware scheduler - 2012, Intel EPT for

vkernels - 2013
I FreeBSD - bhyve: instruction caching - 2014, porting bhyve on

ARM - 2015 (and present), coordinating save-restore and
migration projects for bhyve

I Promoting bhyve through some diploma and master projects
(e.g. ATA emulation, NE2000 emulation)

I Coordinating these diploma and master projects

About me

I University POLITEHNICA of Bucharest
I PhD: virtualization on embedded devices
I Lector: operating systems, systems architecture, networks

I BSD world
I DragonFly BSD: SMT aware scheduler - 2012, Intel EPT for

vkernels - 2013
I FreeBSD - bhyve: instruction caching - 2014, porting bhyve on

ARM - 2015 (and present), coordinating save-restore and
migration projects for bhyve

I Promoting bhyve through some diploma and master projects
(e.g. ATA emulation, NE2000 emulation)

I Coordinating these diploma and master projects

About me

I University POLITEHNICA of Bucharest
I PhD: virtualization on embedded devices
I Lector: operating systems, systems architecture, networks

I BSD world
I DragonFly BSD: SMT aware scheduler - 2012, Intel EPT for

vkernels - 2013
I FreeBSD - bhyve: instruction caching - 2014, porting bhyve on

ARM - 2015 (and present), coordinating save-restore and
migration projects for bhyve

I Promoting bhyve through some diploma and master projects
(e.g. ATA emulation, NE2000 emulation)

I Coordinating these diploma and master projects

Hardware Assisted Virtualization
I A new CPU privilege level

I On Intel/AMD: extends the current kernel mode
(root/non-root)

I On ARM (v7 and v8): a brand new level called Hyp-mode

Normal world Secure world

User mode User mode

Kernel modes

Hyp mode
Kernel modes

Monitor mode

Hardware Assisted Virtualization
I A new CPU privilege level

I On Intel/AMD: extends the current kernel mode
(root/non-root)

I On ARM (v7 and v8): a brand new level called Hyp-mode

Normal world Secure world

User mode User mode

Kernel modes

Hyp mode
Kernel modes

Monitor mode

Type-2 Hypervisor on ARM

I Is more difficult to achieve

I Have to rewrite significant parts of the base OS to use the
new registers

I Even then you can’t run userspace apps directly over it

Type-2 Hypervisor on ARM

I Is more difficult to achieve

I Have to rewrite significant parts of the base OS to use the
new registers

I Even then you can’t run userspace apps directly over it

Type-2 Hypervisor on ARM

I Is more difficult to achieve

I Have to rewrite significant parts of the base OS to use the
new registers

I Even then you can’t run userspace apps directly over it

Type-2 Hypervisor on ARM (2)

I We need to leverage the FreeBSD management mechanisms

I Don’t want to write a full hypervisor from scratch

I Insert only a small code into Hyp-mode
I Bridge between the host OS and the hardware
I It’s called when doing hypervisor operations

I Other type-2 implementation - KVM
I VirtualOpenSystems did the same thing

Type-2 Hypervisor on ARM (2)

I We need to leverage the FreeBSD management mechanisms

I Don’t want to write a full hypervisor from scratch
I Insert only a small code into Hyp-mode

I Bridge between the host OS and the hardware
I It’s called when doing hypervisor operations

I Other type-2 implementation - KVM
I VirtualOpenSystems did the same thing

Type-2 Hypervisor on ARM (2)

I We need to leverage the FreeBSD management mechanisms

I Don’t want to write a full hypervisor from scratch
I Insert only a small code into Hyp-mode

I Bridge between the host OS and the hardware
I It’s called when doing hypervisor operations

I Other type-2 implementation - KVM
I VirtualOpenSystems did the same thing

bhyve components

HYP mode

Kernelspace

Userspace bhyve bhyveload

vmm

Hyp­mode
component

libvmmapi

ioctl

libcalls

Libraries

hypervisor
configuration

From bhyve-x86 to bhyve-arm

Kernel

vmm.ko

libvmmapi

bhyveload bhyve bhyvectl

I Created a new sys/arm/vmm by copying the VMM interface
from sys/amd64/vmm

I vmm-arm - kernel module, manages Hyp state, context
switching, guest physical memory and other aspects

I libvmmapiarm - userland API for ARM
I bhyveloadarm - userspace bootloader, creates vm and does

initial setup, loads guest operating system into memory
I bhyvearm - userspace run loop, emulates stdin/stdout

From bhyve-x86 to bhyve-arm

Kernel

vmm.ko

libvmmapi

bhyveload bhyve bhyvectl

I Created a new sys/arm/vmm by copying the VMM interface
from sys/amd64/vmm

I vmm-arm - kernel module, manages Hyp state, context
switching, guest physical memory and other aspects

I libvmmapiarm - userland API for ARM
I bhyveloadarm - userspace bootloader, creates vm and does

initial setup, loads guest operating system into memory
I bhyvearm - userspace run loop, emulates stdin/stdout

From bhyve-x86 to bhyve-arm

Kernel

vmm.ko

libvmmapi

bhyveload bhyve bhyvectl

I Created a new sys/arm/vmm by copying the VMM interface
from sys/amd64/vmm

I vmm-arm - kernel module, manages Hyp state, context
switching, guest physical memory and other aspects

I libvmmapiarm - userland API for ARM
I bhyveloadarm - userspace bootloader, creates vm and does

initial setup, loads guest operating system into memory
I bhyvearm - userspace run loop, emulates stdin/stdout

From bhyve-x86 to bhyve-arm

Kernel

vmm.ko

libvmmapi

bhyveload bhyve bhyvectl

I Created a new sys/arm/vmm by copying the VMM interface
from sys/amd64/vmm

I vmm-arm - kernel module, manages Hyp state, context
switching, guest physical memory and other aspects

I libvmmapiarm - userland API for ARM

I bhyveloadarm - userspace bootloader, creates vm and does
initial setup, loads guest operating system into memory

I bhyvearm - userspace run loop, emulates stdin/stdout

From bhyve-x86 to bhyve-arm

Kernel

vmm.ko

libvmmapi

bhyveload bhyve bhyvectl

I Created a new sys/arm/vmm by copying the VMM interface
from sys/amd64/vmm

I vmm-arm - kernel module, manages Hyp state, context
switching, guest physical memory and other aspects

I libvmmapiarm - userland API for ARM
I bhyveloadarm - userspace bootloader, creates vm and does

initial setup, loads guest operating system into memory

I bhyvearm - userspace run loop, emulates stdin/stdout

From bhyve-x86 to bhyve-arm

Kernel

vmm.ko

libvmmapi

bhyveload bhyve bhyvectl

I Created a new sys/arm/vmm by copying the VMM interface
from sys/amd64/vmm

I vmm-arm - kernel module, manages Hyp state, context
switching, guest physical memory and other aspects

I libvmmapiarm - userland API for ARM
I bhyveloadarm - userspace bootloader, creates vm and does

initial setup, loads guest operating system into memory
I bhyvearm - userspace run loop, emulates stdin/stdout

Low-level Boot-up

I Crafted an init code placed in locore
I It jumps to a routine where it checks if the platform booted in

Hyp-mode
I Install some stub exception vector for Hyp-mode
I Marks the virtualization available

I Created some low-level routines for installing the exception
vector for Hyp-mode

I The most important entry is the Hypervisor one
I It jumps there whenever hvc instruction is called or a VM

raises an exception

I Implement the low-level code which is doing context switching
between the host OS and the VM

I Save and restore the context (e.g. registers, co-proc registers)

Low-level Boot-up

I Crafted an init code placed in locore
I It jumps to a routine where it checks if the platform booted in

Hyp-mode
I Install some stub exception vector for Hyp-mode
I Marks the virtualization available

I Created some low-level routines for installing the exception
vector for Hyp-mode

I The most important entry is the Hypervisor one
I It jumps there whenever hvc instruction is called or a VM

raises an exception

I Implement the low-level code which is doing context switching
between the host OS and the VM

I Save and restore the context (e.g. registers, co-proc registers)

Low-level Boot-up

I Crafted an init code placed in locore
I It jumps to a routine where it checks if the platform booted in

Hyp-mode
I Install some stub exception vector for Hyp-mode
I Marks the virtualization available

I Created some low-level routines for installing the exception
vector for Hyp-mode

I The most important entry is the Hypervisor one
I It jumps there whenever hvc instruction is called or a VM

raises an exception

I Implement the low-level code which is doing context switching
between the host OS and the VM

I Save and restore the context (e.g. registers, co-proc registers)

How the Host OS is Making Hypervisor Calls?

I Executes the hvc instruction

I First parameter indicates the address of a routine

I In Hyp-mode the code checks that the call came from the
host OS

Interrupt vector for Hypervisor mode

Interrupt vector table

0x14 b hyp_hvc

Hypervisor

Kernel

...
hvc #0
...

hyp_hvc:
 ...
 ...

Low-level Interface for Type-2 Hypervisor

I vmm stub install - change the Hyp-mode exception vector
with the empty one;

I hyp init hvc - init the Hyp-mode environment.

I vmm call hyp - is called from kernel-mode to request a
service from Hyp-Mode;

I vmm set get hvbar - sets or gets a given exception vector;

I hyp enter guest - make the context switch between the
host and the next guest that needs to be run;

I hyp exit guest - make the context switch from the guest to
the host by restoring the host state;

Low-level Interface for Type-2 Hypervisor

I vmm stub install - change the Hyp-mode exception vector
with the empty one;

I hyp init hvc - init the Hyp-mode environment.

I vmm call hyp - is called from kernel-mode to request a
service from Hyp-Mode;

I vmm set get hvbar - sets or gets a given exception vector;

I hyp enter guest - make the context switch between the
host and the next guest that needs to be run;

I hyp exit guest - make the context switch from the guest to
the host by restoring the host state;

Low-level Interface for Type-2 Hypervisor

I vmm stub install - change the Hyp-mode exception vector
with the empty one;

I hyp init hvc - init the Hyp-mode environment.

I vmm call hyp - is called from kernel-mode to request a
service from Hyp-Mode;

I vmm set get hvbar - sets or gets a given exception vector;

I hyp enter guest - make the context switch between the
host and the next guest that needs to be run;

I hyp exit guest - make the context switch from the guest to
the host by restoring the host state;

Low-level Interface for Type-2 Hypervisor

I vmm stub install - change the Hyp-mode exception vector
with the empty one;

I hyp init hvc - init the Hyp-mode environment.

I vmm call hyp - is called from kernel-mode to request a
service from Hyp-Mode;

I vmm set get hvbar - sets or gets a given exception vector;

I hyp enter guest - make the context switch between the
host and the next guest that needs to be run;

I hyp exit guest - make the context switch from the guest to
the host by restoring the host state;

Low-level Interface for Type-2 Hypervisor

I vmm stub install - change the Hyp-mode exception vector
with the empty one;

I hyp init hvc - init the Hyp-mode environment.

I vmm call hyp - is called from kernel-mode to request a
service from Hyp-Mode;

I vmm set get hvbar - sets or gets a given exception vector;

I hyp enter guest - make the context switch between the
host and the next guest that needs to be run;

I hyp exit guest - make the context switch from the guest to
the host by restoring the host state;

Low-level Interface for Type-2 Hypervisor

I vmm stub install - change the Hyp-mode exception vector
with the empty one;

I hyp init hvc - init the Hyp-mode environment.

I vmm call hyp - is called from kernel-mode to request a
service from Hyp-Mode;

I vmm set get hvbar - sets or gets a given exception vector;

I hyp enter guest - make the context switch between the
host and the next guest that needs to be run;

I hyp exit guest - make the context switch from the guest to
the host by restoring the host state;

Memory Mapping

I Hyp-mode is basically another address space with its own
mappings

I New translation level (Stage-2 translation) for VM isolation

I Issue: only LPAE is supported for both translations

I FreeBSD doesn’t support LPAE and we cannot leverage on its
memory management

Memory Mapping

I Hyp-mode is basically another address space with its own
mappings

I New translation level (Stage-2 translation) for VM isolation

I Issue: only LPAE is supported for both translations

I FreeBSD doesn’t support LPAE and we cannot leverage on its
memory management

LPAE Support

I Implement LPAE support in the VMM code

I Support for 40bit PA

I 3-level pagetables support (other formats are available but I’ve
simplified the implementation)

I Issue: On 32-bit we don’t have the DMAP mechanism (we
need the virtual address of each entry to be able to write on it)

I Created a shadow pagetable for each level 1 and level 2
pagetables which have the VAs

LPAE Support

I Implement LPAE support in the VMM code

I Support for 40bit PA

I 3-level pagetables support (other formats are available but I’ve
simplified the implementation)

I Issue: On 32-bit we don’t have the DMAP mechanism (we
need the virtual address of each entry to be able to write on it)

I Created a shadow pagetable for each level 1 and level 2
pagetables which have the VAs

LPAE Support

I Implement LPAE support in the VMM code

I Support for 40bit PA

I 3-level pagetables support (other formats are available but I’ve
simplified the implementation)

I Issue: On 32-bit we don’t have the DMAP mechanism (we
need the virtual address of each entry to be able to write on it)

I Created a shadow pagetable for each level 1 and level 2
pagetables which have the VAs

Memory Mapping Considerations

I Mapped the hypervisor code at the same address in Hyp-mode
and in host OS

I All the pointers passed between modes needs to be consistent

I The Hyp-mode works with the MMU enabled using a normal
stage-1 translation using it’s own pagetables

Type of translations

Stage 2
translation

Hypervisor
virtual
address

Stage 1
translation

Stage 1 translation

Intermediate
physical
address

Physical
address

Guest operating
system virtual

address

Physical address

Device Emulation

I Implement MMIO emulation using traps in a Stage-2
translation

I Implement the paravirtualized serial console (bvm from
amd64)

Device Emulation

I Implement MMIO emulation using traps in a Stage-2
translation

I Implement the paravirtualized serial console (bvm from
amd64)

Is the guest alive?

I The guest boots up asyncroniously

I In order to interract with it, one needs reponse to user input

I The responses are coming though interrupt controller

I Also guest must respond to user input

I There has to be a mechanism that interrupts the guest from
time to time to check if it has anything from the user

I Timer!
I This presentation covers the virtualization of

I Interrupt controller
I Timer

Is the guest alive?

I The guest boots up asyncroniously

I In order to interract with it, one needs reponse to user input

I The responses are coming though interrupt controller

I Also guest must respond to user input

I There has to be a mechanism that interrupts the guest from
time to time to check if it has anything from the user

I Timer!
I This presentation covers the virtualization of

I Interrupt controller
I Timer

Is the guest alive?

I The guest boots up asyncroniously

I In order to interract with it, one needs reponse to user input

I The responses are coming though interrupt controller

I Also guest must respond to user input

I There has to be a mechanism that interrupts the guest from
time to time to check if it has anything from the user

I Timer!
I This presentation covers the virtualization of

I Interrupt controller
I Timer

Is the guest alive?

I The guest boots up asyncroniously

I In order to interract with it, one needs reponse to user input

I The responses are coming though interrupt controller

I Also guest must respond to user input

I There has to be a mechanism that interrupts the guest from
time to time to check if it has anything from the user

I Timer!
I This presentation covers the virtualization of

I Interrupt controller
I Timer

Is the guest alive?

I The guest boots up asyncroniously

I In order to interract with it, one needs reponse to user input

I The responses are coming though interrupt controller

I Also guest must respond to user input

I There has to be a mechanism that interrupts the guest from
time to time to check if it has anything from the user

I Timer!
I This presentation covers the virtualization of

I Interrupt controller
I Timer

Is the guest alive?

I The guest boots up asyncroniously

I In order to interract with it, one needs reponse to user input

I The responses are coming though interrupt controller

I Also guest must respond to user input

I There has to be a mechanism that interrupts the guest from
time to time to check if it has anything from the user

I Timer!

I This presentation covers the virtualization of
I Interrupt controller
I Timer

Is the guest alive?

I The guest boots up asyncroniously

I In order to interract with it, one needs reponse to user input

I The responses are coming though interrupt controller

I Also guest must respond to user input

I There has to be a mechanism that interrupts the guest from
time to time to check if it has anything from the user

I Timer!
I This presentation covers the virtualization of

I Interrupt controller
I Timer

Why do we need interrupts?

I We don’t want to do polling

I We have a new device called interrupts controller

I The interrupt controller is a connector between CPU and any
device which takes care of notifying

Figure: A CPU using interrupts

Types of interrupt controllers

I Advanced Programmable Interrupt Controller (APIC) - on x86
(Intel and AMD)

I Generic Interrupt Controller (GIC) - on ARM

Types of interrupt controllers

I Advanced Programmable Interrupt Controller (APIC) - on x86
(Intel and AMD)

I Generic Interrupt Controller (GIC) - on ARM

Generic Interrupt Controller

I Is a system present in ARM processors

I Centralizes interrupt support and management

I Provides a set of registers which enable management of
interrupt sources and behavior

I May provide support for the following:
I Security Extension
I Virtualization Extension
I Software Generated Interrupts
I Managing and generating interrupts from hardware sources
I Interrupt masking and prioritization
I Uniprocessor and multiprocessor events

Basic components of GIC

I Distributor - prioritizes and distributes interrupts to the CPU
interfaces

I CPU interfaces - provides priority masking and preemption
handling for processors

GIC design

CPU core

CPU
interface

GIC distributor

CPU core

CPU
interface

CPU core

CPU
interface

CPU core

CPU
interface

Interrupts Interrupts Interrupts Interrupts
...

GIC specific registers

I GICD ISENABLERn / GICD ICENABLERn - Interrupt
Set/Clear-Enable Registers - enable/disable forwarding of the
corresponding interrupt from the distributor to the CPU
interfaces

I GICD ISPENDRn / GICD ICPENDRn - Interrupt
Set/Clear-Pending Registers - sets/clears the pending state of
respective interrupt

I GICD ISACTIVERn / GICD ICACTIVERn - Interrupt
Set/Clear-Active Registers - activates/deactivates an
interrupt; used when saving and restoring the GIC state

I GICC IAR - Interrupt Acknowledge Register - contains the
interrupt ID for the processor to read

I GICC EOIR - End of Interrupt Register - signals the
completion of handling an interrupt

Interrupt lifecycle

I Transitions 1 and 2 - the interrupt becomes pending due to
being generated by a peripheral or software

Figure: Interrupt Lifecycle

Interrupt lifecycle(2)

I Transitions 3 and 4 - the pending state is removed either
because the interrupt was deasserted, in case it is level
triggered, or due to software modifying the state

Figure: Interrupt Lifecycle

Interrupt lifecycle(3)

I Transition 5 - applies to edge triggered interrupts upon
acknowledgement

Figure: Interrupt Lifecycle

Interrupt lifecycle(4)

I Transition 6 - same as 5 for level triggered interrupts

Figure: Interrupt Lifecycle

Interrupt lifecycle(5)

I Transitions 7 and 8 - software deactivates the interrupt

Figure: Interrupt Lifecycle

Interrupt Controller Virtualization

I 2 components: Distributor and CPU Interface

I ARM provides a CPU Virtual Interface which can be used
directly by the VM

I Mapped CPU Interface over the CPU Virtual Interface
I Virtual CPU interfaces - the virtual counterpart to the

physical CPU interfaces, provide the same functionality for use
in virtualized systems; also contain a control block through
which it can be controlled

I One needs to emulate the accesses to the distributor

Interrupt Controller Virtualization

I 2 components: Distributor and CPU Interface
I ARM provides a CPU Virtual Interface which can be used

directly by the VM
I Mapped CPU Interface over the CPU Virtual Interface
I Virtual CPU interfaces - the virtual counterpart to the

physical CPU interfaces, provide the same functionality for use
in virtualized systems; also contain a control block through
which it can be controlled

I One needs to emulate the accesses to the distributor

Interrupt Controller Virtualization

I 2 components: Distributor and CPU Interface
I ARM provides a CPU Virtual Interface which can be used

directly by the VM
I Mapped CPU Interface over the CPU Virtual Interface
I Virtual CPU interfaces - the virtual counterpart to the

physical CPU interfaces, provide the same functionality for use
in virtualized systems; also contain a control block through
which it can be controlled

I One needs to emulate the accesses to the distributor

GIC virtualization specific registers

I GICV IAR - Interrupt Acknowledge Register - contains the
interrupt ID for the processor to read

I GICV EOIR - End of Interrupt Register - signals the
completion of handling an interrupt

I GICH LRn - List Registers - contain interrupt context
information to be used by the virtual CPU interfaces

I GICH ELSRn - Empty List Register Status Registers - can be
used to identify which List Registers are available to deliver an
interrupt

GIC virtualization specific registers

I GICV IAR - Interrupt Acknowledge Register - contains the
interrupt ID for the processor to read

I GICV EOIR - End of Interrupt Register - signals the
completion of handling an interrupt

I GICH LRn - List Registers - contain interrupt context
information to be used by the virtual CPU interfaces

I GICH ELSRn - Empty List Register Status Registers - can be
used to identify which List Registers are available to deliver an
interrupt

GIC Memory Mappings

I In order to enable interaction with vGIC similar to the normal
GIC it is required to map the memory region used by the
interrupt controller for memory-mapped IO in the address
space of the guest

I GICC on GICV

I Additionally, access to this region must be trapped within the
hypervisor to take appropriate action - (GICD)

GIC Memory Mappings

I In order to enable interaction with vGIC similar to the normal
GIC it is required to map the memory region used by the
interrupt controller for memory-mapped IO in the address
space of the guest

I GICC on GICV

I Additionally, access to this region must be trapped within the
hypervisor to take appropriate action - (GICD)

Distributor Emulation

I Register the Distributor address range accesses for in-kernel
emulation

I Created internal structure to retain the state of the distributor
for each VM

I Basically configs of each interrupt (e.g. irq enable, irq active,
irq state, irq conf)

I All reads and writes to Distributor registers are handled

I Need to populate the LR register acordingly to the state of
the distributor

I the LR register contains all the active interrupts that are
signaled to the CPU Virtual Interface of the VM

I To leverage existing interrupt controller logic, the internal
state of the vGIC is flushed to hardware before switching to
the guest and then synced back to software once control is
handed over to the host.

Distributor Emulation

I Register the Distributor address range accesses for in-kernel
emulation

I Created internal structure to retain the state of the distributor
for each VM

I Basically configs of each interrupt (e.g. irq enable, irq active,
irq state, irq conf)

I All reads and writes to Distributor registers are handled

I Need to populate the LR register acordingly to the state of
the distributor

I the LR register contains all the active interrupts that are
signaled to the CPU Virtual Interface of the VM

I To leverage existing interrupt controller logic, the internal
state of the vGIC is flushed to hardware before switching to
the guest and then synced back to software once control is
handed over to the host.

Distributor Emulation

I Register the Distributor address range accesses for in-kernel
emulation

I Created internal structure to retain the state of the distributor
for each VM

I Basically configs of each interrupt (e.g. irq enable, irq active,
irq state, irq conf)

I All reads and writes to Distributor registers are handled

I Need to populate the LR register acordingly to the state of
the distributor

I the LR register contains all the active interrupts that are
signaled to the CPU Virtual Interface of the VM

I To leverage existing interrupt controller logic, the internal
state of the vGIC is flushed to hardware before switching to
the guest and then synced back to software once control is
handed over to the host.

Distributor Emulation

I Register the Distributor address range accesses for in-kernel
emulation

I Created internal structure to retain the state of the distributor
for each VM

I Basically configs of each interrupt (e.g. irq enable, irq active,
irq state, irq conf)

I All reads and writes to Distributor registers are handled

I Need to populate the LR register acordingly to the state of
the distributor

I the LR register contains all the active interrupts that are
signaled to the CPU Virtual Interface of the VM

I To leverage existing interrupt controller logic, the internal
state of the vGIC is flushed to hardware before switching to
the guest and then synced back to software once control is
handed over to the host.

Distributor Emulation

I Register the Distributor address range accesses for in-kernel
emulation

I Created internal structure to retain the state of the distributor
for each VM

I Basically configs of each interrupt (e.g. irq enable, irq active,
irq state, irq conf)

I All reads and writes to Distributor registers are handled

I Need to populate the LR register acordingly to the state of
the distributor

I the LR register contains all the active interrupts that are
signaled to the CPU Virtual Interface of the VM

I To leverage existing interrupt controller logic, the internal
state of the vGIC is flushed to hardware before switching to
the guest and then synced back to software once control is
handed over to the host.

Distributor Emulation

I Register the Distributor address range accesses for in-kernel
emulation

I Created internal structure to retain the state of the distributor
for each VM

I Basically configs of each interrupt (e.g. irq enable, irq active,
irq state, irq conf)

I All reads and writes to Distributor registers are handled

I Need to populate the LR register acordingly to the state of
the distributor

I the LR register contains all the active interrupts that are
signaled to the CPU Virtual Interface of the VM

I To leverage existing interrupt controller logic, the internal
state of the vGIC is flushed to hardware before switching to
the guest and then synced back to software once control is
handed over to the host.

Distributor Emulation

I Register the Distributor address range accesses for in-kernel
emulation

I Created internal structure to retain the state of the distributor
for each VM

I Basically configs of each interrupt (e.g. irq enable, irq active,
irq state, irq conf)

I All reads and writes to Distributor registers are handled

I Need to populate the LR register acordingly to the state of
the distributor

I the LR register contains all the active interrupts that are
signaled to the CPU Virtual Interface of the VM

I To leverage existing interrupt controller logic, the internal
state of the vGIC is flushed to hardware before switching to
the guest and then synced back to software once control is
handed over to the host.

Generic Timer with Virtualization

I An implementation of the Generic Timer with Virtualization
Extension provides four timers per CPU

I Non-secure PL1 physical timer
I Secure PL1 physical timer
I Non-secure PL2 physical timer
I Virtual timer

Virtual Generic Interrupt Controller

Name Description

CNTV CTL Virtual Timer Control register. Used by the guest to interact with the
timer hardware

CNTV CVAL Virtual Timer CompareValue register

CNTHCTL Controls access to the physical registers. In particular, the PL1PCTEN
and PL1PCEN are used to disable access to the physical timer registers

CNTVOFF Virtual Offset register - specifies value to be subtracted from physical
counter in order to obtain virtual counter

Virtual Generic Interrupt Controller

Figure: Virtual Timer Workflow

Virtual Generic Interrupt Controller

I The workflow of the virtualization process is as follows:

1. At guest initialization (state 0), the CNTVOFF register is
initialized with the current value of the physical timer,
rendering the virtual counter 0 for the newly created virtual
machine

2. Before entering the guest (transition from state 1 to state 2),
the hypervisor internal state for the virtual timer is checked in
order to determine whether any interrupts should have been
triggered by the timer and need to be injected by the vGIC

3. Upon entering the guest (state 2), the hypervisor enables the
virtual timer if necessary, disables access to the physical timer,
and restores the CNTVOFF register for the current virtual
machine, as well as restoring CNTV CVAL and CNTV CTL

Virtual Generic Interrupt Controller (2)

4. While running, the guest accesses the virtual timer with no
intervention from the hypervisor (state 3); any interrupts
triggered here are sent to the vGIC, which will inject them
accordingly

5. When exiting the guest, the CNTV CVAL and CNTV CTL
registers are saved (state 4) and the hypervisor internal state
is updated (transition from state 4 to state 1

6. The host continues to use the physical timer until the guest is
run again, when the process resumes at step 2

Results

I Currently, FreeBSD finishes the boot process while running as
a guest in bhyve.

Results - listing

...

gic0: <ARM Generic Interrupt Controller > mem 0x2c001000 -0x2c001fff ,0x2c002000 -0

x2c003fff on ofwbus0

gic0: Cannot find Virtual Interface Control Registers. Disabling Hyp -Mode ...

intr_pic_register (): PIC 0xc2207100 registered for gic0 <dev 0xc2633b80 , xref 1>

intr_pic_claim_root (): irq root set to gic0

generic_timer0: <ARMv7 Generic Timer > irq 0,1,2,3 on ofwbus0

vgic_dist_mmio_write on cpu: 0 with gpa: 2c001100 size: 4 with val: 8000000

Timecounter "ARM MPCore Timecounter" frequency 24000000 Hz quality 1000

Event timer "ARM MPCore Eventtimer" frequency 24000000 Hz quality 1000

cpulist0: <Open Firmware CPU Group > on ofwbus0

cpu0: <Open Firmware CPU > on cpulist0

cryptosoft0: <software crypto >

NULL mp in getnewvnode (9), tag crossmp

Timecounters tick every 1.000 msec

WARNING: WITNESS option enabled , expect reduced performance.

WARNING: DIAGNOSTIC option enabled , expect reduced performance.

md0: Embedded image 18251776 bytes at 0xc0475f94

Trying to mount root from ufs:/dev/md0 []...

warning: no time -of-day clock registered , system time will not be set accurately

#

Development platform for bhyve ARM

I FastModels from ARM emulating an CortexA15 (XX
evaluation days, needs license from ARM)

I Running bhyve ARM on a real hardware platform

I Runnning bhyve ARM on Samsung Exynos 5250 and Cubie2
(All Winner A20)

Development platform for bhyve ARM

I FastModels from ARM emulating an CortexA15 (XX
evaluation days, needs license from ARM)

I Running bhyve ARM on a real hardware platform

I Runnning bhyve ARM on Samsung Exynos 5250 and Cubie2
(All Winner A20)

Running bhyve ARM on a real hardware platform

I The code base was very old from April 2015 and the boards
weren’t booting up

I Did a rebase with the current HEAD and our development
repo

I Fix locore-v6.S integration of Andrew’s LEAVE HYP and our
hypervisor stub install method

I Fix the problems with vGIC introduced by INTRNG

I Get the latest u-boot which left the board in Hyp-mode state

I hvc instruction is causing an undefined instruction exception

Running bhyve ARM on a real hardware platform

I The code base was very old from April 2015 and the boards
weren’t booting up

I Did a rebase with the current HEAD and our development
repo

I Fix locore-v6.S integration of Andrew’s LEAVE HYP and our
hypervisor stub install method

I Fix the problems with vGIC introduced by INTRNG

I Get the latest u-boot which left the board in Hyp-mode state

I hvc instruction is causing an undefined instruction exception

Running bhyve ARM on a real hardware platform

I The code base was very old from April 2015 and the boards
weren’t booting up

I Did a rebase with the current HEAD and our development
repo

I Fix locore-v6.S integration of Andrew’s LEAVE HYP and our
hypervisor stub install method

I Fix the problems with vGIC introduced by INTRNG

I Get the latest u-boot which left the board in Hyp-mode state

I hvc instruction is causing an undefined instruction exception

Running bhyve ARM on a real hardware platform

I The code base was very old from April 2015 and the boards
weren’t booting up

I Did a rebase with the current HEAD and our development
repo

I Fix locore-v6.S integration of Andrew’s LEAVE HYP and our
hypervisor stub install method

I Fix the problems with vGIC introduced by INTRNG

I Get the latest u-boot which left the board in Hyp-mode state

I hvc instruction is causing an undefined instruction exception

hvc undefined instruction

I U-boot problems
I U-boot loads Linux using bootm command, which switches to

HYP-mode on entering the kernel
I FreeBSD kernel is loaded by u-boot with the simpler go

command
I Patched the go flow for ARM in order to enter kernel in

HYP-mode

I Bugs in locore-v6.S
I ldr pseudo-instruction was used to load addresses of various

labels in registers
I ldr requires address to be in the range of a page (4K) relative

to the pc
I Moved the label closer using a temporary symbol table
I The address loaded by ldr was not the label’s address, but the

one stored at the label’s location, so we replaced ldr with adr

hvc undefined instruction

I U-boot problems
I U-boot loads Linux using bootm command, which switches to

HYP-mode on entering the kernel
I FreeBSD kernel is loaded by u-boot with the simpler go

command
I Patched the go flow for ARM in order to enter kernel in

HYP-mode

I Bugs in locore-v6.S
I ldr pseudo-instruction was used to load addresses of various

labels in registers
I ldr requires address to be in the range of a page (4K) relative

to the pc

I Moved the label closer using a temporary symbol table
I The address loaded by ldr was not the label’s address, but the

one stored at the label’s location, so we replaced ldr with adr

hvc undefined instruction

I U-boot problems
I U-boot loads Linux using bootm command, which switches to

HYP-mode on entering the kernel
I FreeBSD kernel is loaded by u-boot with the simpler go

command
I Patched the go flow for ARM in order to enter kernel in

HYP-mode

I Bugs in locore-v6.S
I ldr pseudo-instruction was used to load addresses of various

labels in registers
I ldr requires address to be in the range of a page (4K) relative

to the pc
I Moved the label closer using a temporary symbol table

I The address loaded by ldr was not the label’s address, but the
one stored at the label’s location, so we replaced ldr with adr

hvc undefined instruction

I U-boot problems
I U-boot loads Linux using bootm command, which switches to

HYP-mode on entering the kernel
I FreeBSD kernel is loaded by u-boot with the simpler go

command
I Patched the go flow for ARM in order to enter kernel in

HYP-mode

I Bugs in locore-v6.S
I ldr pseudo-instruction was used to load addresses of various

labels in registers
I ldr requires address to be in the range of a page (4K) relative

to the pc
I Moved the label closer using a temporary symbol table
I The address loaded by ldr was not the label’s address, but the

one stored at the label’s location, so we replaced ldr with adr

Encoutered Issues

I The host interrupts were not disabled before entering guest
execution

I Consequently, these would arrive while the guest was running
and were identified as spurious.

I The cause was mistakenly assumed to be the incomplete
implementation of the vGIC logic.

I Differences between the emulator and the hardware paltform:
some steps were not required for the emulator to behave
correctly

Encoutered Issues

I The host interrupts were not disabled before entering guest
execution

I Consequently, these would arrive while the guest was running
and were identified as spurious.

I The cause was mistakenly assumed to be the incomplete
implementation of the vGIC logic.

I Differences between the emulator and the hardware paltform:
some steps were not required for the emulator to behave
correctly

Encoutered Issues

I The host interrupts were not disabled before entering guest
execution

I Consequently, these would arrive while the guest was running
and were identified as spurious.

I The cause was mistakenly assumed to be the incomplete
implementation of the vGIC logic.

I Differences between the emulator and the hardware paltform:
some steps were not required for the emulator to behave
correctly

Encoutered Issues

I The host interrupts were not disabled before entering guest
execution

I Consequently, these would arrive while the guest was running
and were identified as spurious.

I The cause was mistakenly assumed to be the incomplete
implementation of the vGIC logic.

I Differences between the emulator and the hardware paltform:
some steps were not required for the emulator to behave
correctly

Next Steps

I Merge the code...

I Merge bhyvearm code https://reviews.freebsd.org/D10213 -
prereq. MD/MI for bhyve

Library

Userspace

Userspace

Kernel

libvmmapiarm

libvmmapi

bhyvearm

bhyve

bhyveloadarm

bhyveload

vmm­arm

vmm

libvmmapi

bhyve

bhyveload

vmm

ARM

x86

ARM

x86

ARM

x86

ARM

x86

Before integration After integration

Makefiles

Next Steps (2)

I Test on more hardware platforms (only Cubie2 at this
moment)

I SMP support in VMM ARM module

Conclusions

I ARM is offering us support to create a performant virtualized
interrupt controller

I Pretty tedious to emulate each operation of the distributor
and debug the timer

I Hard to debug on hardware platforms

Thank you for your attention!
ask questions

Conclusions

I ARM is offering us support to create a performant virtualized
interrupt controller

I Pretty tedious to emulate each operation of the distributor
and debug the timer

I Hard to debug on hardware platforms

Thank you for your attention!
ask questions

Conclusions

I ARM is offering us support to create a performant virtualized
interrupt controller

I Pretty tedious to emulate each operation of the distributor
and debug the timer

I Hard to debug on hardware platforms

Thank you for your attention!
ask questions

	Interrupts
	Generic Interrupt Controller
	Interrupt Virtualization
	Generic Timer Virtualization
	Results and issues
	Final thoughts

