
5/18/2019 Running daemons non-root

file:///Users/sjg/work/rst/talks/obj/run-daemons-non-root-slides.htm 1/8

Running daemons non-root
Simon J. Gerraty

Juniper Networks, Inc.

2019

Imagine something very witty here

Agenda
Introduction
Daemons need privileges
Approach
Progress
Further work
Q&A

Introduction
Running daemons non-root was goal 20 years ago
Hacking kernel always an option
Modern FreeBSD offers better solutions

Capabilities (Capsicum)
Mandatory Access Control (MAC)

Daemons need privileges
open AF_UNIX sockets in protected dirs
open raw sockets
bind reserved ports
set fib (routing instance)
read[/write] routing socket
set sysctl values
tweak rlimits
configure devices

read/write /dev/mem

5/18/2019 Running daemons non-root

file:///Users/sjg/work/rst/talks/obj/run-daemons-non-root-slides.htm 2/8

CLI needs privileges too
setuid

open MGD managemnt socket
run ping, traceroute with restricted options

careful to drop privs when not needed
raising privs controlled by MGD (uses fine grained permissions control)

better if simply run as user ?
possibly safer to remain setuid for opening managemnt socket then permanently drop privs

Goal
run daemons as unprivileged user

minimize collateral damage from bugs and exploits
use of Verified Exec mitigates local exploits

allow controlled and specific privilege escalation
just enough to do the operations needed

allow gradual transition
potentially one daemon at a time

many filesystem related privileges could be addressed by redesign
subdir of /var/run/ with group write permissions
makes transition more disruptive

Hack the kernel?
simple (for some value of simple) if brutal
Cheswick and Bellovin [ChBe94] took this approach
maintenance nightmare
we did not go there ;-)

Capabilities
Capsicum offers light weight Capabilities mode
In FreeBSD; capabilities can be passed/inherited like file descriptors
Mostly aimed at limiting what a process can do
Run process in a sandbox with no escape
Need for proxy to handle global lookups
Launchd can simplify granting capabilities

centralized configuration and control
Can use capabilities without entering Capability mode
Non-trivial redesign

5/18/2019 Running daemons non-root

file:///Users/sjg/work/rst/talks/obj/run-daemons-non-root-slides.htm 3/8

Capsicum Chromium example
Watson et al [WALK10] provide a comparison of methods used to sandbox Chromium browser:

OS Model Line count Description

Windows ACLs 22,350 Windows ACLs and SIDs
Linux chroot 605 setuid root helper sandboxes renderer
Mac OS X Seatbelt 560 Path-based MAC sandbox
Linux SELinux 200 Restricted sandbox type enforcement domain
Linux seccomp 11,301 seccomp and userspace syscall wrapper
FreeBSD Capsicum 100 Capsicum sandboxing using cap_enter

Chrome design lends itself to this treatment

Mandatory Access Control - MAC
Framework to control interactions between subjects and objects

subjects and objects may be labeled
Key to success is suitable mac_* API calls throughout the kernel

checks for whether current process cr_uid == 0 (ie are we root) replaced with calls to
priv_check_cred which calls various mac_check_*
MAC modules register to receive mac_* calls.

Generally serves to limit access
mac_priv_grant is the exception!

priv_check_cred hence mac_priv_grant; have no visibility to object of interest, only subject
requesting.

MAC continued
MAC labels are free form text meaningful to one or more MAC modules.
MAC modules/tools can set labels on many subjects and system objects
Latest mac_veriexec can bind labels to verified file objects

limited to immutable files
mac_veriexec just stores labels, it does not use them

Approach: mac_grantbylabel
New mac module to leverage mac_priv_grant and labels via mac_veriexec
Initially minimize code changes to Junos

remove explicit checks for running as root if GBL label set
add uid and gid tokens to jlaunchd parser

if app has GBL label run as specified user
eases upgrade/downgrade issues

allow addressing daemons one at a time
eventually tackle filesystem layout changes

5/18/2019 Running daemons non-root

file:///Users/sjg/work/rst/talks/obj/run-daemons-non-root-slides.htm 4/8

Recap: mac_veriexec
reimplementation of Verified Exec (from NetBSD originally) as MAC module

sbin/veriexec loads signed manifest content

ioctl to /dev/veriexec feeds mac_veriexec

manifest provides fingerprint (hash) flags and more:

sbin/veriexec sha256=cafebabe... trusted
sbin/verify-sig sha256=2cafebabe... no_ptrace
usr/bin/python sha256=deadbeef... indirect
usr/libexec/ftpd sha256=0ffedead... no_fips

Recap: mac_veriexec cont.
fingerprint and other data tracked per inode (dev,fileid,gen)
fingerprint evaluation status cached in vnode->v_label

evaluation optimized for verified filesystem

Use mac_veriexec to
prevent unsigned

apps running
kernel modules loading
shared libs linking

indirect prevents direct execution of interpreters eg Python, Ruby etc.
no_prtrace prevents ptrace of sensitive apps
no_fips prevents apps running in FIPS mode
trusted (implies no_ptrace) allowed to write /dev/veriexec
Junos package system uses veriexec -x $file to test for verified

maclabel set via veriexec
labels are free-form text (meaningful only to relevant MAC module)

comma separated list of module/value tokens:

$ grep label= manifest
usr/sbin/snmpd sha256=efffeea6babe... label=gbl/daemon
usr/sbin/rpd sha256=cee8c666... label=gbl/daemon,gbl/rtsock

gbl/daemon maps to several GBL_* bits

latest veriexec passes them to kernel (mac_veriexec) for storage along with hash (fingerprint) and flags

5/18/2019 Running daemons non-root

file:///Users/sjg/work/rst/talks/obj/run-daemons-non-root-slides.htm 5/8

priv_check_cred at a glance
in the long ago; kernel just checked for super user: cred->cr_uid == 0
replaced with calls to priv_check(td, priv) or priv_check_cred(cred, priv, flags)

mac_priv_check(cred, priv) can say NO
prison_priv_check(cred, priv) can say NO
if suser_enabled and cr_uid == 0 YES
mac_priv_grant(cred, priv) can say YES!
default result: NO (EPERM)

mac_grantbylabel
simple MAC module
during exec(2) ask mac_veriexec for label associated with curproc->p_textvp
parse label and any gbl/* tokens set GBL_* bits in module specific label (stored in
curproc->p_textvp->v_label)
gbl_label_t is uint32_t for trivial storage
when priv_check_cred calls mac_priv_grant check if label contains relevant bit and return success if
so.

Privileged operations
sys/priv.h lists over 200 separate PRIV_*

mac_grantbylabel compresses these into GBL_* each of which represents a group:

case PRIV_NETINET_BINDANY:
case PRIV_NETINET_RESERVEDPORT: /* socket bind low port */
case PRIV_NETINET_REUSEPORT:
 if (label & GBL_BIND)
 rc = 0;
 break;

so far 7 GBL_* bits cover the privileges our daemons need.

Run CLI as user?
set label on CLI so it can open MGD management socket?

unlike daemons CLI is much more exposed to user, might be safer to rely on setuid to open socket then
permanently drop
note: priv_check_cred hence mac_priv_grant have no visibility to object

set label on ping and traceroute so they can operate without root privs.
again more potential for abuse

bottom line; leave as is

5/18/2019 Running daemons non-root

file:///Users/sjg/work/rst/talks/obj/run-daemons-non-root-slides.htm 6/8

Run daemons non-root
label for necessary privs in manifest entry
tweak jlaunchd.conf entry to specify [default] uid and gid to use
jlaunchd ignores uid if no GBL label set for daemon
remove explicit checks for uid 0
can migrate one at a time
minimal code change during transition

Progress
proof of concept complete ?
if rpd can work non-root anything can ;-)
chassisd might be as or more challenging
more interesting applications of GBL labels also tested

Further work
each daemon needs testing to ensure all privs accounted for

huge effort from multiple teams
avoiding/reducing need for filesystem privs would be best

requires re-work of runtime environment
more extensive code changes
best tackled after majority of daemons addressed

possibly use mac_vnode_*_check to limit scope of remaining filesystem privs
Other applications ...

Python
Junos has run only signed code since 2005
Allowing unsigned Python (or Ruby etc) is insane!!!
Shipped Python interperter (/usr/bin/python) cannot be run directly

all scripts must be signed
all imports must be signed

For internal developers we have an unrestricted interperter

Running unsigned Python
Some customers want ability to run unsigned python too

provide un-restricted python ?
turn off veriexec ?
allow self signing ?

mac_grantbylabel can help

5/18/2019 Running daemons non-root

file:///Users/sjg/work/rst/talks/obj/run-daemons-non-root-slides.htm 7/8

Running unsigned Python within limits
Zero Touch Provisioning (ZTP) is a popular use-case
Data center users want to leverage Python
Self signing won't work until trust anchors installed
Allow only specific application (eg. dhclient) to run unsigned python

new PRIV_VERIEXEC_*
mac_veriexec can call mac_priv_grant as needed
mac_grantbylabel can allow override of PRIV_VERIEXEC_* (such as indirect flag) if have
GBL_VERIEXEC
totally scary and evil but alternatives are far worse

As with all privileges granted by mac_grantbylabel cannot be inherited.

Running unsigned Python cont.
suitably labeled app tries to directly exec interpreter in child process
mac_veriexec spots indirect flag and calls mac_priv_grant(PRIV_VERIEXEC_DIRECT)
mac_grantbylabel checks v_label for GBL_VERIEXEC

return success if set, after setting GBL_VERIEXEC in curproc->p_label

child (running interpreter) tries to read unsigned script
mac_veriexec spots failure of O_VERIFY and calls
mac_priv_grant(PRIV_VERIEXEC_NOVERIFY)
mac_grantbylabel checks p_label for GBL_VERIEXEC

return success if set.

exec_script
API to seamlessly deal with unsigned scripts

int execv_script(const char *interpreter, char * const *argv);

if (script = argv[0]) is signed, simply execv(script, argv)

if we have suitable GBL_VERIEXEC in label

if interpreter not provided, obtain from start of script (eg. #!/usr/bin/python)
syslog running script via interpreter
execv(interpreter, argv)

5/18/2019 Running daemons non-root

file:///Users/sjg/work/rst/talks/obj/run-daemons-non-root-slides.htm 8/8

Q&A
Questions

[ChBe94] William R. Cheswick; Steven M. Bellovin: Firewalls and Internet Security. Addison-Wesley 1994
Reading, Massachusetts

[WALK10] Robert N. M. Watson; Jonathan Anderson; Ben Laurie; Kris Kennaway: Capsicum: practical
capabilities for UNIX. 2010
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36736.pdf

Author: sjg@juniper.net
Revision: $Id: run-daemons-non-root-slides.txt,v 3022ccb0c8b1 2019-05-18 13:00:29Z sjg $
Copyright: Juniper Networks, Inc.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36736.pdf
mailto:sjg@juniper.net

