
Porting to the

Zachary McGrew, Philip A. Nelson

“Of course it runs NetBSD!”

Today’s Talk

● Introduction
● Simulators, Toolchains, and

Build Scripts, Oh My!
● Moving Targets
● Virtual Memory
● Pmap Common
● Current Status
● Future Work

Introduction - NetBSD
● Free
● Fast
● Secure
● Highly portable

Unix-like Open
Source operating
system

Introduction - NetBSD
● The NetBSD project was started in 1993

○ Happy 25th birthday!

● Zach McGrew is a new NetBSD developer
○ I worked on the RISC-V port for grad school

● Phil Nelson is NetBSD developer #6
○ He did the PC532 port
○ Currently updating the Wi-Fi stack

● Runs on 57 different platforms
○ And 16 different types of CPUs

● “Of course it runs NetBSD!”

Some NetBSD Platforms
Dreamcast
(SH3)

HP JORNADA 690
(hpcsh)ATARI TT030

(mk68k)

Pinebook
(aarch64)

(armv6hf) (amd64) (i386)

VAX Station
(vax)

WZERO3
(hpcarm)

Toaster
(arm32)

Other toaster (A.K.A. IronForge)
(armv7hf)

So why not one more?

Introduction - RISC-V
● Originally developed at U.C.

Berkeley in 2010 as a teaching
example

● A free and open source ISA
● Royalty free too!
● Currently controlled by the

RISC-V foundation

● Who are the foundation
members?

(a few) RISC-V Foundation Members

Introduction - RISC-V
● Multiple specifications

○ RISC-V ISA
■ RV32I

● RV32E
■ RV64I
■ RV128I (Seriously)
■ Many extensions to the specification

○ Privileged ISA

● NetBSD port targets RV64GSU (RV64IMAFDSU)

○ Plans for eventual RV32GSU support

RISC-V Extensions
● A - Atomic Instructions
● B - Extended Bit Manipulation
● C - Compressed Instructions
● D - Double-Precision Floating-Point
● E - Base Integer Instruction Set (embedded), 32-bit, 16 registers
● F - Single-Precision Floating-Point
● G - Shorthand for IMAFD extensions
● I - Base Integer Instruction Set, [32-bit, 64-bit, or 128-bit], 32 registers
● J - Dynamically Translated Languages
● L - Decimal Floating-Point
● M - Integer Multiplication and Division
● N - User-Level Interrupts
● P - Packed-SIMD Instructions
● Q - Quad-Precision Floating-Point
● S - Supervisor mode
● T - Transactional Memory
● U - User mode
● V - Vector Operations
● Yxxx/Zxxx - Nonstandard vendor extensions

Simulators,
Toolchains,

and Build Scripts,
Oh My!

● Spike
○ “RISC-V ISA Simulator, implements a functional model of one or more RISC-V processors.”
○ Feed it a RISC-V binary and run code on your standard AMD64 desktop/laptop
○ Spike doesn’t have a BIOS/UEFI services

■ Needs a boot loader to actually load the binary (BBL)
■ BBL provides BIOS/UEFI services via SBI
■ BBL probes the hardware and generates the FDT

○ Still a problem…
■ Need to build the RISC-V binaries

● BBL
● NetBSD Kernel

Simulators

Toolchains
● BBL needs needs a C library to do some of its work

○ riscv64-unknown-elf-*
■ Build Binutils (gas, ld, and friends)
■ Build GCC
■ Build Newlib (Small C library)
■ Build GCC again

● NetBSD kernel uses it own “mini” C library
○ riscv64--netbsd-*

■ Build Binutils (gas, ld, and friends)
■ Build GCC

Buildscripts
● Building toolchains is complicated, and takes a lot of work

○ You need to pass the correct flags to the configure script
○ Enjoy a sample of my nightmare

● Got a working compiler?
○ Great
○ Now try and compile the kernel
○ Use the NetBSD build script...

Buildscripts - build.sh
● NetBSD uses a build script to wrap its makefiles

1. Build Make without a makefile
2. Do a bunch of automagic detecting of things that Make can’t detect
3. Invoke the newly built Make telling it about all the things you’ve learned
4. Make builds all the tools it needs to build NetBSD

4.1. Uh… We’ve got our own external toolchain already (fsck!)
4.2. Modify the makefiles to accept an external toolchain
4.3. Rejoice!

5. Make builds the kernel
5.1. Discover ~50 compilation errors in code that’s not even in your part of the source

tree because you’re using a newer, “smarter” version of GCC than the rest of the
NetBSD developers

5.2. Turn off -werror
5.3. Rejoice!

Oh My!
● Got a built kernel?

○ Can’t load it into Spike directly

● Wrap kernel in BBL
● Each new kernel build requires a build of BBL as well
● Extend build script to automate this process
● Load BBL that holds the kernel into Spike
● Crash & Burn.

Moving Targets
● RISC-V port was started by Matt Thomas in 2015
● Specs weren’t as concrete as they are today

○ Specs have changed
○ A lot
○ In small ways
○ But enough to break things everything

● SFENCE.VM Vs. SFENCE.VMA
○ One letter difference (Goodbye SFENCE.VM)
○ Assembler will still generate opcode for you
○ Spike will get angry and crash though...

Moving Targets
● Privileged Spec changed the most

○ Page Table Entries (PTEs) completely redone
○ New way of marking transient entries in page tables
○ Interrupts handled completely different
○ Control and Status registers moved bits all over the place
○ Privileges themselves are mapped differently

■ (Currently) no hypervisor mode - May come back?
○ Supervisor can’t read user’s memory by default

■ Meltdown isn’t (currently) a problem on RISC-V! w00t!

Moving Targets
● What does it all mean?

○ locore.S is pretty much garbage at this point
■ Needs a rewrite
■ Start with bootstrapping virtual memory

Virtual Memory
● RISC-V has three different sizes of virtual memory

○ Sv32 - 4 GB max memory
○ Sv39 - 512 GB max memory
○ Sv48 - 256 TB max memory

● NetBSD port uses Sv39
○ Shouldn’t be hard to move to Sv48 in the future, just add extra page of lookups

● Sv39 is three layers
○ 512 entries of 1 GB
○ 512 entries of 2 MB
○ 512 entries of 4 K

Virtual Memory
● NetBSD takes advantage of the hardware support for big pages

○ Kernel is initially mapped on 2 MB pages
■ Expands on standard 4 K pages when it requests more memory

● Create L1 page table
○ Put entry in for start of kernel address

■ Currently 0xffffffff000000 — Makes the math easy

● Create L2 page table
○ Put entries for all 2 MB pages up until just past the end of the kernel

● No L3 pages created by default

Virtual Memory
● Got a page table? Great!
● Load it into the Supervisor Address Translation and Protection (satp) register
● Crash & Burn.

Virtual Memory
● Anytime the satp register is changed it causes a fault
● Clever fix (Thanks FreeBSD!)

○ Set fault vector to my current address in highmem + 4
○ Set satp
○ Fault to highmem and keep running
○ Set fault vector to real fault handler

● Alternate fix
○ Set bit in mtvec to not fault when satp register changes

■ Requires modifying BBL
■ Repercussions?

● Now running where we belong in virtual memory!
○ Spend and hour writing a console device driver and keep going
○ Console driver was easy thanks to SBI

● Physical mapping of memory in processes
● pmap(9)

○ “machine-dependent portion of the virtual memory system.”

● Very complex code
○ FreeBSD RISC-V devs said it was the hardest part of the port for them

● Can’t mess it up, or you’re in for a world of hurt when debugging

● Every machine does the more or less the same task, why not abstract it
further?

Pmap

Pmap Common
● Started in ~2011 by Matt Thomas — Same guy who started RISC-V port
● Handle all the normal work (machine independent) that all platforms do

anyway
● Call helper functions to do small amounts of machine dependent work
● Awesome idea for portability!
● In use by MIPS and (some) PowerPC ports
● Work started to convert other ports to it as well

Pmap Common
● Just one small problem…

○ Only works on platforms without hardware page tables
■ RISC-V has a hardware page table

○ MIPS and PowerPC just have TLBs
○ RISC-V doesn’t allow direct writes to the TLB

■ TLB writes are managed by the MMU

● Crash & Burn.

Pmap Common
● This project extended pmap common to support hardware page tables

○ New set of helper functions
■ Create/update hardware specific page tables
■ Do manual lookups when needed
■ Extract hardware bits for permissions

● Some things can’t exist in pmap common
○ pmap_bootstrap()

■ Hyper specific to the platform it’s running on

Current Status
Virtual memory

Console driver

Pmap

kthread_create()

fork1()

cpu_switchto()

Root file system

Current Status “Of course it runs NetBSD!”

Current Status
● I joined the NetBSD Project and got my commit bit last month
● Maya got userland built, so I’ll be at the hacker lounge tonight trying to get it

running the init process.
● Need some free time to sit down and work with Maxime Villard (port

maintainer) and get it merged into the CVS tree
○ Side note: I graduated and got a job with weekends off, so this can actually happen =)

Future Work
● Import GCC 7.3 into NetBSD source tree

○ Currently being worked on by Matthew Green
○ Enables

■ Getting rid of the external toolchains
■ Ability to build a root file system

● Hey who likes userland tools?

● GCC 7.3 imported into source tree
○ Other developers already playing with RISC-V code
○ I need to stop slacking and keep working

Future Work
● Other simulators

○ QEMU seems to be popular among RISC-V community

● Booting on physical hardware
○ SiFive HiFive Unleashed board is sitting on my workbench
○ Get access to devices — Like networking!

Future Work
● DDB

○ Stack traces on RISC-V are weird
○ RISC-V has a return address register (ra)
○ This means the return address doesn’t always get pushed onto the stack

■ Provides a speedup by not doing this, but makes it harder to debug
○ Started work on this, but haven’t figured out a way to extract the needed information
○ Current debugging method: printf();

● FDT support
○ Would be nice to know exactly what the hardware is
○ Also memory ranges

■ System currently makes assumption about RAM

Future Work
● SMP

○ Machines have all these “extra” cores now…
○ Might as well use them?

■ Currently all cores besides the first just sit in an infinite loop waiting on interrupts
○ Requires IPI work and probably more locking

● RV32 compatibility
○ NetBSD has extensive compatibility for other platforms

■ AMD64 can run i386 binaries
■ Aarch64 can run arm32 binaries
■ Would be neat if RV64 could run RV32 binaries

Future Work
● Reclaim wasted memory after kernel and up to 2 MB boundary

○ Non-debug kernel is slightly over 8 MB, which means 10 MB gets mapped
○ Rest of that space can’t be reclaimed
○ What’s the fix?

■ Map 8 MB on 2 MB pages, then the rest on 4 K pages

● Teach malloc() about big pages
○ Could help speed up memory requests for memory hungry programs

■ Looking at you, Firefox.
○ Future research project?

Future Work
● Move to Sv48 Virtual Memory

○ Expands address space, allowing address space randomisation even more space to play with
○ Shouldn’t bee too much work to extend Sv39
○ Kernel option to pick?

Thanks
● Phil Nelson - Research advisor and all around awesome dude

● Aran Clauson - For inspiration and listening to my dumb ideas

● Nick Hudson - Helped with PMAP Common stuff when I was really lost

● Matt Thomas - Starting PMAP Common and RISC-V port

