

unwind(8) - florian@OpenBSD.org

1

A recursive name server for every laptop

2

Opportunistic DNSSEC validation

3

Captive-portal detection

4

Adapt to local conditions...

5

... no matter how harsh.

6

OpenBSD developer since 2012
author of slowcgi(8), slaacd(8) (cf. BSDCan 2018),
rad(8), unwind(8), sysupgrade(8), ...
poked at things in the network stack

Senior Systems Engineer @ RIPE NCC
BGP, DNS, ...
k.root-servers.net, pri.authdns.ripe.net

7

root name servers

13 servers ([a..m].root-servers.net)
~ 1000 instances
run by 12 independent root server operators
(cf. root-servers.org)

8

A Day in the Life of a Root Name Server

9

quick introduction to DNS
~2k - 3k pages of RFCs; there will be inaccuracies,
lies and omissions (cf. powerdns.org/dns-camel)
distributed hierarchical key-value database
(www.undeadly.org, A) → 94.142.241.173
(173.241.142.94.in-addr.arpa, PTR) →
www.undeadly.org

10

.

arpa ca com net org

in-addr ip6 OpenBSD BSDCan undeadly

94 www

142

241

11

Authoritative Name Server
The source of truth for part of the hierarchy (root
(.), org, undeadly.org)
knows the answer (NOERROR)
knows that there is no answer (NXDOMAIN)
knows who else to ask (NOERROR, delegation)
key is outside the name servers hierarchy
(REFUSED)

12

Recursive Name Server
navigates the DNS tree
most of the complexity and smarts of DNS

13

lib C resolver
getaddrinfo(3) / getnameinfo(3)
talks to a recursive name sever
configured in /etc/resolv.conf

14

What is the IPv4 address of www.undeadly.org?
 struct addrinfo hints, *res0;

 memset(&hints, 0, sizeof(hints));

 hints.ai_family = AF_INET;

 getaddrinfo("www.undeadly.org", "www", &hints, &res0);

15

16

17

18

19

20

21

22

23

24

25

query name minimization (qname minimization)
only send required parts to authoritative servers
improves privacy
needs a few quirks in recursive name servers but
works well enough

26

27

28

29

30

DNSSEC

31

Relax..., breathe!

32

DNSSEC
origin authentication
integrity
denial of existence
no confidentiality

33

DNSSEC can do some neat things
follows the DNS hierarchy, so not everyone can
sign everything like in TLS / X509
DANE binds X509 certificates to domain names

validation (kinda) must run on the local machine

34

DNSSEC has some problems on a laptop
needs accurate clock (how unwind(8) started!)
network middle boxes filtering DNSSEC
recursive name server doesn't support DNSSEC

35

That wasn't too bad.

36

Two more things...

37

Where to send DNS queries
do your own recursion
configure a name server (quad-X, maybe w/ DNS
over TLS (DoT))
name server learned via DHCP or router
advertisements
WiFi or 4G?
all fighting over /etc/resolv.conf

38

Where to send DNS queries (cont'd): privacy - who
can see the queries

dhcp / quad-X
server operator
Person In The Middle (pitm)

DoT
DoT server operator
pitm DoT → auth correlate queries to origin(?)

recursion with qname minimization
pitm near laptop but generally not near auths

39

captive-portals
"Click here to accept Terms of Service"
plays evil tricks with DNS, blocks Internet access
must use DHCP provided name servers

40

Let's get cracking!

41

previous approaches: dhclient
just owns /etc/resolv.conf
will get you past captive-portals
at the mercy of recursive name server operator
no DNSSEC

42

previous approaches: static configuration
tell dhclient to leave /etc/resolv.conf alone
will likely not get you past captive-portals
will not work in places where DNS is filtered
no DNSSEC

43

previous approaches: run unbound(8) on localhost
tell dhclient to leave /etc/resolv.conf alone
can use DNS over TLS (DoT)
DNSSEC validation
will likely not get you past captive-portals
will not work in places where DNS is filtered

44

previous approaches: FreeBSD's resolvconf(8) /
openresolv

framework to handle multiple sources for
/etc/resolv.conf
very powerful: controllable by scripts, executes
scripts as event handlers
supports local recursive name servers
does not seem to come with batteries included

45

Welcome unwind(8).

46

unwind(8) introduction
a validating name server for every laptop
should always run
must be at least as good as using DHCP provided
name servers

47

unwind(8) introduction (cont'd)
uses libunbound for the heavy DNS li�ing:

DNSSEC
recursion
forwarding to recursive name servers
DNS over TLS

48

unwind(8) introduction (cont'd)
privilege separated daemon
processes run in a restricted-service operating
mode (pledge(2))
processes have a restricted filesystem view
(unveil(2))

49

unwind(8) introduction (cont'd)
looks out for network changes
actively monitors network quality

50

Let's check out some details.

51

libunbound
developed by NLnet Labs as part of unbound(8)
unwind has a local copy, but no changes

→ updates are easy, whenever we update
unbound in base, copy files over

upstream is receptive to diffs

52

privilege separation, pledge(2) & unveil(2)
standard for all network daemons in OpenBSD
easiest way to get a new one:

transmogrify an existing one (~ 1 - 2h)
automatically has all the security benefits, a
config parser, config reload, a logging framework,
and a control tool

53

parent

frontend

resolver

captive portal

priv'sep (cont'd), parent:
parse config, send to children
→ frontend:

route socket
listen control socket
trust anchor file (rw)
listen udp/53
dhcp lease file (r)

→ captive-portal:
connect check host tcp/80

54

parent

frontend

resolver

captive portal

priv'sep (cont'd), frontend:
handle service port (53/udp)

read query, pass on to
resolver, send answer
ask parent to open 53/udp
when resolver indicates
DNS working
close udp/53 when
resolver indicates that DNS
stopped working

55

parent

frontend

resolver

captive portal

priv'sep (cont'd), frontend:
handle control socket

set log level in all procs
ask parent to config reload
pass status request on

handle route socket
on interface change ask
parent to open DHCP lease
file, parse it, and pass
name servers on to
resolver process

56

parent

frontend

resolver

captive portal

priv'sep (cont'd), resolver:
DNS heavy li�ing

receives query from
frontend, sends answer to
frontend
checks quality of different
resolving strategy, decides
on best
initiates captive-portal
check via parent
periodically check DNS for
new TAs

57

parent

frontend

resolver

captive portal

priv'sep (cont'd), captive-
portal:

HTTP speaker
receives connected socket
from parent
sends GET request
parses response and
compares to expected
response from config file
informs resolver

58

priv'sep, pledge(2) & unveil(2) (cont'd)
pledge(2): restricted-service operating mode

stdio: operate on open FDs only
inet: talk to Internet
rpath: open files for reading
...

unveil(2): restricted filesystem view

59

priv'sep, pledge(2) & unveil(2) (cont'd)
parent: stdio, inet, dns, rpath, sendfd
frontend: stdio, unix, recvfd
resolver: stdio, inet, dns, rpath

unveil: /etc/ssl/cert.pem
captive-portal: stdio, recvfd

60

monitoring network quality
multiple resolving strategies:

recursion
dhcp
forwarder
DoT

61

monitoring network quality (cont'd)
periodically sends "SOA" queries for the root zone

known to exist
known to be signed

resolving strategy quality
1. validating
2. resolving
3. unknown
4. dead

62

monitoring network quality (cont'd)
keeps a histogram of response time

aggregates by buckets
could be used to switch resolving strategies

[florian@x1:~]$ unwindctl status recursor

selected type status

 * recursor validating

 histogram[ms]

 <10 <20 <40 <60 <80 <100 <200 <400 <600 <800 <1000

 1021 63 380 444 283 123 190 99 25 17 16

63

misc
captive-portal detection

configure URL and expected HTTP status code
and / or body
prefer dhcp name servers
re-probe continuously

Running a connectivity test provider with httpd(8)

httpd.conf:

#server "c.example.com" {

listen on * port 80

location "*" { block return 204 }

#}

captive portal {

 url "http://c.example.com/"

 expected status 204

}

64

misc (cont'd)
config file

works well without one!
but no built-in captive-portal url :(

captive portal { ... }

default

preference { DoT forwarder recursor dhcp }

forwarder 208.67.222.222 # resolver1.opendns.com

forwarder "9.9.9.9" port 853 authentication name "dns.quad9.net" Do

65

misc (cont'd)
must be as good as dhcp

if all strategies fail, close listen 53/udp socket →
lib C resolver will fall over to dhcp provided
name servers immediately

$ cat /etc/resolv.conf

Generated by vio0 dhclient

search home

nameserver 127.0.0.1

nameserver 84.116.46.21

nameserver 84.116.46.20

$ cat /etc/dhclient.conf

prepend domain-name-servers 127.0.0.1;

66

portable notes
RTM_IFINFO, dhclient lease file: extend
unwindctl(8)
pledge(2) & unveil(2): #define 0, add chroot(2),
arrange access to cert.pem
treat pledge(2) & unveil(2) as annotations for your
sandboxing facility

67

Future work

68

Future work
stop parsing lease files; switch to RTM_PROPOSAL
get name servers from router advertisements
per-network config for split horizon DNS, VPNs, ...
switch strategy if current one is "too slow"
built-in captive-portal detection
DNSSEC validation too opportunistic

69

Questions?

70

Come on! Don't be shy!

71

