
Institutionalizing FreeBSD Isolated and Virtualized Hosts
Using bsdinstall(8), zfs(8) and nfsd(8)

Michael Dexter
editor@callfortesting.org

BSDCan 2018, Ottawa, Canada

The FreeBSD operating system includes the isolation and virtualization multiplicity facilities chroot(8),
jail(8), bhyve and Xen, but offers limited facilities for the creation and management of isolated or
virtualized targets1. The ‘bsdinstall(8) jail’, jail.conf(8), and vmrun.sh tools support rudimentary
Jail and bhyve target creation and management and are not designed for automation using in-base or
external tools. This paper will explore how the bsdinstall(8), nfsd(8) and zfs(8) in-base FreeBSD
resources can be leveraged to create authentic, block and file storage-backed operating system
installations suitable for use with not only chroot(8) and jail(8) isolated environments, bhyve(8) and
Xen virtual machines, but also network-booted hardware machines. Leveraging in-base tools in support of
in-base multiplicity facilities enables not only traditional isolated or virtualized “guest” hosts2, but also
enables the efficient, more-comprehensive testing of supported and end-of-life releases of BSD operating
systems for regression investigation. While the work described in this paper is based on the FreeBSD
operating system, its fundamental methodologies described should apply in part or in full to other BSD
operating systems.

Isolation vs. Virtualization

BSD Unix has a rich history of providing isolation and virtualization multiplicity facilities. Isolation
facilities shall be narrowly defined as those providing one or more isolated3 instances of one or more
software Application Binary Interfaces (ABIs), typified by the FreeBSD chroot(8) and jail(8)
facilities providing an isolated FreeBSD or Linux-compatible execution environment managed by a single
global kernel. In practice, the “Jail” is a root sub-directory located below the root directory that behaves
like an authentic root environment in which executables of a compatible ABI can execute. Virtualization
facilities by contrast shall be narrowly defined as those that provide one or more instances of a hardware
Instruction Set Architecture (ISA), typified by the FreeBSD bhyve and Xen virtual machine
managers/hypervisors providing authentic, albeit virtualized “machines” that allow privileged binary
execution, such as by an independent kernel and operating system. In practice, the “VM” is an additional
hardware machine of the same architecture (i.e. amd64) within the single hardware machine. The
definitive criteria for virtual machines was described by Popek and Goldberg in 19744 and dictate that
such machines should be “efficient, isolated duplicate[s] of the real machine” whose resources are fully
managed by the “virtual machine manager”.

While authentic ABI and ISA compatibility are assumed from isolation and virtualization facilities, little
formal regard has been given, in theory or practice, to the fidelity of operating system installations to
isolated or virtualized targets. That is, the installation procedures for independent hardware machines are

1 Kristaps Džonsons. A Taxonomy of Computer System Multiplicity. Swedish Royal Institute of Technology.
“The target [whether operating systems, instances or individual processes] defines what is being
pluralized, while the strategy is the general means of implementation.”

2 In the network, rather than virtualization sense.
3 Kristaps Džonsons. Logical Resource Isolation in the NetBSD Kernel. AsiaBSDCon 2008.
4 Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third generation

architectures. Communications of the ACM, 17(7):412-421, July 1974.

often repeated for isolated and virtualized destinations with little regard for the correctness of the
installation or configuration of the operating system, or the automation of the act of installation.
Inversely, traditional operating system installation procedures to independent hardware machines have
not benefited from the automation strategies developed for guest “containers”, “VMs”, “cloud instances”,
“zones”, “droplets5” and the like. To this day, a BSD Unix installation, regardless of the specific
operating system, involves booting to a read-only CD-ROM, DVD-ROM, or equivalent flash media
device and engaging and interactive installer. While this may represent an consistent operator experience
that results in an consistent and authentic installation, it reveals the failure of operating systems to adapt
to this era of ubiquitous multiplicity. “Cloud” and “container” environments have given rise to “cloud-
native” operating systems such as a OSv, CoreOS, Rancher OS, and RedHat Project Atomic, yet these
operating systems rarely represent fundamental departures from the Unix model of computing. Arguably,
“cloud-native operating system” efforts more demonstrate misunderstandings of the Unix model of
computing than actual flaws in the Unix model of computing that require addressing. The limited
awareness of isolated and virtualized installation targets on the part of operating system installers is
without question a challenge, but arguably also stems from misunderstandings of the Unix model of
computing. For example, FreeBSD has supported “root on NFS” network booting from as early as its first
release but its installers have done little to accommodate this installation scenario. The situation for
jail(8) environments is better but limited, despite jail(8) functionality arriving in the FreeBSD 4.0
release in the year 2000.

FreeBSD bsdinstall(8)

The FreeBSD operating system has a long history of installation utilities and an equally-long history of
user dissatisfaction with those utilities. Early sh(1) shell script-based installation assistants were
considered too “user unfriendly”, giving way to the C-based sysinstall(8), and later sh(1) and C-
based bsdinstall(8) and bsdconfig(8) installers/configurators, plus the sh(1)-based pc-
sysinstall(8). While each installer has demonstrated its own unique balance of flexibility, usability and
site-specific configurability, the fundamental steps of a Unix system installation have not changed
significantly in decades:

• One or more persistent storage devices is sliced or partitioned
• The slices or partitions are formatted with one or more file systems
• Operating system binaries and supporting data are copied to a mounted root file system, typically

from a tar(1) archive
• Minimal or extensive system configuration is performed, often with dedicated utilities or the

modification of text files
• A boot loader is installed to the appropriate location of the persistent storage device

Introduced with FreeBSD 9.0, bsdinstall(8) performs all of these steps with a relatively-high level of
flexibility in comparison to the installers found in other BSD operating systems. It provides multiple slice
and partitioning schemes, a choice of UFS and ZFS file systems, and allows for basic system
configuration including networking, users and some services. bsdinstall(8) also offers a basic scripting
facility with which an automated installation configuration script can be passed into bsdinstall(8), plus
a rudimentary “jail” mode that allows the operating system to be installed into a root sub-directory sans
a kernel. Complimenting bsdinstall(8)’s many strengths are several weaknesses:

• bsdinstall(8) assumes a “fresh” installation on dedicated hardware, sans “jail” mode
• bsdinstall(8) assumes the installation of one specific version of the operating system

5 A vendor-specific term that illustrates the breadth of terminology referring to multiplicity targets.

• bsdinstall(8) is dependent on several functions provided by bsdconfig(8)
• bsdinstall(8) does not separate application logic from presentation, with the GPL-licensed

dialog(1) as a dependence
• While largely sh(1)-based, bsdinstall(8) ignores ‘exit’ statements, limiting debugability
• The C-based components of bsdinstall(8) require a different development methodology than

its sh(1) components

Fortunately, many of these limitations can be overcome in service of reducing the distinctions between
independent hardware and isolated or virtualized system installations.

bsdinstall(8) Proof-of-Concept Improvements

bsdinstall(8) uses environment variables to override its defaults, based on user input either collected
by a dialog(1)-based user interface or its automated “script” mode. bsdinstall(8) was designed to
work in conjunction with UFS-formatted bootable installation media and to install only the installation
media-booted version of FreeBSD to dedicated hardware. The following changes to bsdinstall(8)
enable its use with isolated and virtualized destinations and are currently under peer review:

• Add support for execution on a read/write ZFS-booted, rather than read-only UFS system
• Add support for “nested6” boot environments for use with the /etc/rc.d/zfsbe rc(8) script
• Add the support for the installation of boot blocks from the requested distribution sets rather than

the installer
• Enable default zpool name collision avoidance
• Add the ability to keep target root directories mounted after installation completion
• Remove dependencies on the GPL-licensed dialog(1) library where possible

bsdinstall(8) ZFS-Booted Execution

The ZFS support in bsdinstall(8) found in /usr/libexec/bsdinstall/zfsboot assumes that the
installer is booted from UFS and by default exports all zpools during its operation. With the FreeNAS 7

and pfSense8 FreeBSD derivatives booting to ZFS as of their 9.3 and 2.4 releases respectively, it is logical
to conclude that the FreeBSD installer will itself move to ZFS, or at a minimum allow for its execution on
a ZFS-booted system. This modification only requires the disabling of the “f_dprintf "$funcname:
Exporting ZFS pools…" section of the /usr/libexec/bsdinstall/zfsboot code.

bsdinstall(8) “Nested” Boot Environments

A ZFS “boot environment” is a dataset that serves as the root directory for the operating system that can
be accompanied by additional root file systems containing similar or different versions of FreeBSD, or
potentially other ZFS-enabled operating systems. By default, a bsdinstall(8) “ZFS” installation uses
the following layout of zpool, boot environment root, and boot environment: zroot/ROOT/default. The
default layout shares child datasets such as /usr and /var as per the following zfsboot code:

6 Also referred to as “deep” boot environments
7 https://freenas.org
8 https://pfsense.org

ZFSBOOT_DATASETS="
 # DATASET OPTIONS (comma or space separated; or both)
 /$ZFSBOOT_BEROOT_NAME mountpoint=none
 /$ZFSBOOT_BEROOT_NAME/$ZFSBOOT_BOOTFS_NAME mountpoint=/
 /tmp mountpoint=/tmp,exec=on,setuid=off
 /usr mountpoint=/usr,canmount=off
 /usr/home # NB: /home is a symlink to /usr/home
 /usr/ports setuid=off
 /usr/src
 /var mountpoint=/var,canmount=off
 /var/audit exec=off,setuid=off
 /var/crash exec=off,setuid=off
 /var/log exec=off,setuid=off
 /var/mail atime=on
 /var/tmp setuid=off
" # END-QUOTE

An example result of the resulting nested layout:

zfs list
NAME USED AVAIL REFER MOUNTPOINT
zroot 1.04M 195G 96K /
zroot/ROOT 88K 195G 88K /tmp
zroot/ROOT/default 352K 195G 88K /usr
zroot/tmp 88K 195G 88K /usr/home
zroot/usr 352K 195G 88K /usr/ports
zroot/usr/home 88K 195G 88K /usr/src
zroot/usr/ports 88K 195G 88K /usr/ports
zroot/usr/src 88K 195G 88K /usr/src
zroot/var 528K 195G 88K /var
zroot/var/audit 88K 195G 88K /var/audit
zroot/var/crash 88K 195G 88K /var/crash
zroot/var/log 88K 195G 88K /var/log
zroot/var/mail 88K 195G 88K /var/mail
zroot/var/tmp 88K 195G 88K /var/tmp

The sharing of /usr and /var is not always desirable, particularly with the goal of supporting non-
FreeBSD operating systems. Prefixing the code with the variables representing the zpool and boot
environment root will change this behavior:

ZFSBOOT_DATASETS="
 /$ZFSBOOT_BEROOT_NAME mountpoint=none
 /$ZFSBOOT_BEROOT_NAME/$ZFSBOOT_BOOTFS_NAME mountpoint=/,canmount=noauto
 /$ZFSBOOT_BEROOT_NAME/$ZFSBOOT_BOOTFS_NAME/tmp mountpoint=tmp,exec=on,setuid=off,canmount=noauto
 /$ZFSBOOT_BEROOT_NAME/$ZFSBOOT_BOOTFS_NAME/usr mountpoint=/usr,canmount=off
 /$ZFSBOOT_BEROOT_NAME/$ZFSBOOT_BOOTFS_NAME/usr/home canmount=noauto
 /$ZFSBOOT_BEROOT_NAME/$ZFSBOOT_BOOTFS_NAME/usr/ports setuid=off,canmount=noauto
 /$ZFSBOOT_BEROOT_NAME/$ZFSBOOT_BOOTFS_NAME/usr/src canmount=noauto
 /$ZFSBOOT_BEROOT_NAME/$ZFSBOOT_BOOTFS_NAME/var mountpoint=/var,canmount=off
 /$ZFSBOOT_BEROOT_NAME/$ZFSBOOT_BOOTFS_NAME/var/audit exec=off,setuid=off,canmount=noauto
 /$ZFSBOOT_BEROOT_NAME/$ZFSBOOT_BOOTFS_NAME/var/crash exec=off,setuid=off,canmount=noauto
 /$ZFSBOOT_BEROOT_NAME/$ZFSBOOT_BOOTFS_NAME/var/log exec=off,setuid=off,canmount=noauto
 /$ZFSBOOT_BEROOT_NAME/$ZFSBOOT_BOOTFS_NAME/var/mail atime=on,canmount=noauto
 /$ZFSBOOT_BEROOT_NAME/$ZFSBOOT_BOOTFS_NAME/var/tmp setuid=off,canmount=noauto
 " # END-QUOTE

Which results in:

zfs list
zroot/ROOT/default 1.04M 195G 96K /
zroot/ROOT/default/tmp 88K 195G 88K /tmp
zroot/ROOT/default/usr 352K 195G 88K /usr
zroot/ROOT/default/usr/home 88K 195G 88K /usr/home
zroot/ROOT/default/usr/ports 88K 195G 88K /usr/ports
zroot/ROOT/default/usr/src 88K 195G 88K /usr/src
zroot/ROOT/default/var 528K 195G 88K /var
zroot/ROOT/default/var/audit 88K 195G 88K /var/audit
zroot/ROOT/default/var/crash 88K 195G 88K /var/crash

zroot/ROOT/default/var/log 88K 195G 88K /var/log
zroot/ROOT/default/var/mail 88K 195G 88K /var/mail
zroot/ROOT/default/var/tmp 88K 195G 88K /var/tmp

As of the FreeBSD 11.1 release, the /etc/rc.d/zfsbe rc(8) script is provided to automatically mount
“child” datasets such as /usr to provide proper system operation. This behavior depends on the added
“canmount=noauto” property which can be seen in the example though this property must be performed
after bsdinstall(8) has completed installation. With this revised reconfiguration, fully-separate
installations of FreeBSD can exist as, for example:

zroot/ROOT/default 1.04M 195G 96K /
zroot/ROOT/default/tmp 88K 195G 88K /tmp
zroot/ROOT/default/usr 352K 195G 88K /usr
...
zroot/ROOT/current 1.04M 195G 96K /
zroot/ROOT/current/tmp 88K 195G 88K /tmp
zroot/ROOT/current/usr 352K 195G 88K /usr
...

The default boot environment is set with the bootfs property of the zpool and can be overridden by the
operator at boot time using the FreeBSD interactive boot menu. In addition to these “nested” boot
environments, a “flat” boot environment is also desirable that simply places the full operating system in
one single dataset with no descendants. The versions of FreeBSD in each boot environment can vary
significantly and the operator need only consider if the global boot loader is compatible with all installed
versions of FreeBSD. In practice for example, FreeBSD 9.0 and 12-CURRENT can be “dual booted”
using this approach. Greater discrepancies in versions are both possible and desired. The selection of a
“nested” boot environment dataset layout in bsdinstall(8) is configured with the proposed parameter
ZFSBOOT_DATASET_NESTING.

Distribution Set Boot Blocks

By default, bsdinstall(8) installs the boot blocks for the target operating system from the booted OS of
the installer. The synchronization of these may be logical for a “fresh install” but is not suitable for say,
installations of a “CURRENT” snapshot of the operating system adjacent to a “STABLE” version. To
overcome this limitation, a proposed parameter BOOT_BLOCKS_FROM_DISTSET is added to
bsdinstall(8), plus a path to the desired boot blocks, BOOT_BLOCKS_PATH=/boot. The FreeBSD boot
blocks are contained in the /boot directory of the base.txz distribution set. If the
BOOT_BLOCKS_FROM_DISTSET variable is set, the modified bsdinstall(8) selectively extracts the /boot
directory by using tar(1) excludes to the destination /tmp/bsdinstall_bootblocks/boot:

cat $BSDINSTALL_DISTDIR/base.txz | \
tar -xf - -C /tmp/bsdinstall_bootblocks/ \
--exclude ./.cshrc \
--exclude ./.profile \
--exclude ./COPYRIGHT \
--exclude ./bin \

...

The boot block installation steps in turn operate from the proposed BOOT_BLOCKS_PATH directory. A
FreeBSD 12-CURRENT installation would thus be installed with the corresponding FreeBSD 12-
CURRENT boot blocks.

zpool Name Collision Avoidance

By default, all ZFS pools configured with bsdinstall(8) are named “zroot” unless the user provides a
custom name. Separate boot pools used by GELI encryption and some non-GPT partitioning layouts
default to “bootpool”. Should a boot environment be automatically configured with a pool named
“zroot” from a primary system booted from the default of “zroot”, a conflict will occur. Because an
operator has an option to provide a custom zpool name, a simple mechanism is employed to avoid
conflicts: the name “zroot” is simply incremented with a number (i.e. zroot1) should “zroot” already
exists. The following code will remove potential zpool conflicts in bsdinstall(8):

_counter=""
zpools=$(zpool list -H -o name)
 for _name in $zpools ; do
 if ["$_name" = "${ZFSBOOT_POOL_NAME}$_counter"]; then
 _counter=$(($_counter+1))
 fi
 done
 ZFSBOOT_POOL_NAME="${ZFSBOOT_POOL_NAME}$_counter"

Mounted Destinations for Further Configuration

By default, bsdinstall(8) performs various “clean up” operations upon completion of the installation
and prior to the assumed reboot of the hardware to which FreeBSD was installed. This behavior is not
necessarily desired during installation to additional targets given that the installation source operating
system may have extensive configuration resources available, rather than the limited set on a traditional
“install” system from which bsdinstall(8) is run. The proposed KEEP_MOUNTED variable and an “if”
statement at the end of the script “verb” /usr/libexec/bsdinstall/ allow bsdinstall(8) to support
this ability:

if [! $KEEP_MOUNTED]; then
 if [$ZFSBOOT_DISKS]; then
 cat /tmp/bsdinstall_zpools | while read _zpool ; do
 f_dprintf "Exporting zpool $_zpool"
 zpool export $_zpool
 done
 else
 f_dprintf "Running bsdinstall umount"
 bsdinstall umount
 fi
fi

Reduce dialog(1) Dependencies

bsdinstall(8)’s extensive dependence on the dialog(1) “dialog box” library provides its biggest
challenge to its improvement for three key reasons:

• This dependency appears to be responsible for bsdinstall(8)’s inability to respond to “exit”
statement, described as “extremely difficult to fix9” by bsdinstall(8) co-author Devin Teske

• bsdinstall(8) does not separate application logic from its dialog(1)-based user interface
• dialog(1) is undesired as a dependency because of its licensing. Acceptably-licensed

alternatives exist but do not provide the required feature set

It is beyond the scope of this exploration to solve architectural flaws in bsdinstall(8).

9 In private conversation.

Fortunately however, the “script”, “zfsboot” and “config” verbs of bsdinstall(8) automation called
with ‘bsdinstall script <script name>’ have only one dialog(1) dependency in the form of the
checksum verb called within the “script” verb. This dependency can be easily resolved by copying the
core checksum logic from the “checksum” verb found in /usr/libexec/bsdinstall/checksum, into the
script verb. This change would enable bsdinstall(8) “automated install” scripting to work without any
dependence on dialog(1) and its dependency, ncurses(3X). The modified bsdinstall(8) can be used
with the following automation script to create a disk image-backed virtual machine installation formatted
for UFS or ZFS:

export BSDINSTALL_DISTDIR="/pub/FreeBSD/snapshots/amd64/amd64/12.0-CURRENT"
export ZFSBOOT_DISKS="md0"
export ZFSBOOT_PARTITION_SCHEME="GPT"
export ZFSBOOT_POOL_NAME="zroot"
export ZFSBOOT_BEROOT_NAME="ROOT"
export ZFSBOOT_BOOTFS_NAME="default"
export ZFSBOOT_DATASET_NESTING="1"
export BOOT_BLOCKS_FROM_DISTSET="1"
Alternative UFS layout in place of the ZFS variable ZFSBOOT_DATASETS
#export PARTITIONS="md0 {512M freebsd-ufs /, 100M freebsd-swap, 512M freebsd-ufs, /var, auto
freebsd-ufs /usr }"

Note that BSDINSTALL_DISTDIR refers to a local copy of the standard FreeBSD download mirror.

Preparation of a “malloc” RAM DISK for testing purposes:

mdconfig -t malloc -s 4G
md0

FreeBSD installation with bsdinstall(8):

bsdconfig script <the script>

bhyve booting of the resulting image with vmrun.sh:

sh /usr/share/examples/bhyve/vmrun.sh -m 2G -d /dev/md0 vm

At this point, several key goals have been achieved by modifying bsdinstall(8):

• A virtual machine installation of a snapshot version of FreeBSD to a block device is performed
using the in-base bsdinstall(8)

• An optional “nested” boot environment ZFS dataset layout is enabled
• The installed system version receives the corresponding version boot blocks
• The installation is performed from a ZFS-booted system
• The automated installation is performed without the use of dialog(1)

However, the “fresh install” orientation of bsdinstall(8) that by default only installs a single version of
FreeBSD from distribution sets contained in /usr/freebsd-dist, fails to do justice to the broad
operating system support provided by the bhyve and Xen hypervisors. bhyve is capable of booting
FreeBSD 5.0 onward and while FreeBSD 5.0 is packaged for use with the older sysinstall(8) installer,
the FreeBSD 5.0 through 8.4 distribution sets are easily repackaged for use with bsdinstall(8). Recall
that the BSD Unix installation strategy has not changed significantly since before the announcement of
FreeBSD, nor has the CD-ROM ISO format. The primary change to the FreeBSD binary packaging
between FreeBSD 5.0-RELEASE and 11.1-RELEASE was the move from gzip(1)-compressed, tar(1)-
archived floppy disk-sized segmented distribution sets (i.e. base.aa, base.ab…), to xz(1)-compressed,
non-segmented distribution sets (i.e. base.txz). Ultimately, it is desirable to move previous release ISOs

such as FreeBSD 5.0 entirely to the contemporary layout used by bsdinstall(8) to facilitate regression
investigation:

1. Move the FreeBSD 5.0 ISO to the contemporary naming for consistent management:

mv 5.0-RELEASE-i386-disc1.iso FreeBSD-5.0-RELEASE-i386-disc1.iso

2. Extract the ISO contents using libarchive(3) via tar(1):

tar -xf FreeBSD-5.0-RELEASE-i386-disc1.iso -C /tmp/freebsd5.0iso/

3. Extract the segmented distribution sets:

cat /tmp/freebsd5.0/base/base.?? | tar --unlink -xpzf - -C /tmp/freebsd5.0/

4. Re-archive the base binaries with the modern “.txz” naming but without xz(1) compression:

tar -cf base.txz -C /tmp/freebsd5.0/base

5. Generate a contemporary MANIFEST file containing archive checksums:

sh /usr/src/release/scripts/make-manifest.sh base.t?? >> MANIFEST

Repeat for the kernel.txz and other distribution sets as desired. An uncompressed archive with
compressed naming is used for its backward compatibility (easily accessed with ‘base.t??’) and because
the operation is assumed to be performed on a contemporary ZFS file system with compression enabled.
The time saved by not compressing the distribution set archives alone makes this strategy desirable.

The repackaging of pre-bsdinstall(8) FreeBSD 5.0 through 8.4 distribution sets is easily scripted
because of the stationary nature of past releases. While source distribution sets can also be repackaged,
they are best checked out from a local SVN mirror in order to include SVN metadata that will be useful
during regression investigation. Finally, past binary packages are of particular value for regression
investigation because their dependencies and source archives are unlikely to be available.

With this groundwork in place, an environment is established in which bsdinstall(8) can be used to
produce block device-backed virtual machines using end-of-life versions of FreeBSD. Compatibility
issues arise however with the storage and network interfaces provided by bhyve. VirtIO devices only
became available in FreeBSD 8.4 and while bhyve provides e1000 network and AHCI storage emulation,
these are inadequate for supporting FreeBSD 5.0. The ATA emulation project10 is not yet of use for this
purpose but the ne2000 project11 from the same author is. This fact provides a unique opportunity.

In addition to supporting sh(1), tar(1) and ISO-9660 since its founding, FreeBSD has also supported
booting from the Network File System (NFS) from as early as FreeBSD version 1.0. These timeless
standards, combined with the ZFS boot environments, the high-performance kernel-level NFS daemon,
plus the bhyve and Xen hypervisors, produce an environment that not only supports the booting of
FreeBSD 5.0 onward virtual machines, FreeBSD derivatives such as TrueOS, FreeNAS and pfSense, but
also on network-connected hardware machines and in a manner that is not limited to the FreeBSD
operating system.

10 https://reviews.freebsd.org/D5473
11 https://wiki.freebsd.org/SummerOfCode2015/NE2000EmulationForBhyve

Networked Boot Environments

Recall that ZFS boot environments allow for multiple versions of a ZFS-enabled operating system to be
installed on a common zpool. If “nested”, a boot environment provides a fully-separated operating system
root directory for each installation without any shared directories such as /usr. Boot environments can
also:

• Be used for chroot(8) and jail(8) isolation environments
• Theoretically hardware-boot foreign ZFS-enabled OSs such as Illumos or NetBSD
• Be shared via NFS to provide local virtual machine, and networked hardware machine booting of

the operating system they contain
• Provide ZFS features such as snapshotting to ZFS-unaware operating systems such as end-of-live

versions of FreeBSD or foreign operating systems
• Contain nested root directories such as for custom-built operating system releases that are further

shared over NFS to create a highly-flexible development, production or regression investigation
environment

An end-of-life version of FreeBSD older that the 7.0 release or most non-FreeBSD operating systems will
obviously not support hardware booting from a ZFS boot environment but this does not diminish the
value of using the ZFS boot environment infrastructure for them. One or more authentic ZFS datasets
shared over the ubiquitous NFS protocol provide a valid and consistent strategy for the management of a
network boot environment for virtual and hardware machines. As a file, rather than block-backed storage
strategy, this approach provides many advantages when developing, testing and experimenting, thanks to
the “panopticon” transparency that the hardware machine has over its isolated or virtualized targets. Data
can easily be transferred to and from the file system system of the hardware machine and isolated or
virtualized targets, and a formal communication mechanism using ssh(1) or VirtIO Serial should be
considered for privileged communication between the many environments. With a formal communication
mechanism, a ZFS-unaware operating system could request ZFS administrative operations such as
snapshots from its ZFS-enabled “host”.

Arguably, ZFS boot environments provide the ultimate Unix chroot(8) environment functionality.

Networked Boot Environment Components

nfsd(8)

Beyond the ZFS boot environments themselves, the FreeBSD in-kernel nfsd(8) provides the other half
of the “heavy lifting” in the Networked Boot Environments scenario. Because ZFS datasets are file
systems in the traditional sense with each each maintaining unique inode numbers, it is important to
understand that nested ZFS datasets must each be shared over NFS individually. The NFS ‘-alldirs’
argument in the exports(5) configuration file will not provide the desired behavior. However, the /etc/
rc.d/zfsbe rc(8) script provides the logic to overcome this challenge by operating on nested datasets
based on various properties such as their “canmount” property. For example, the syntax to mount the
nested datasets of a requested boot environment would be:

zfs list -rH -o mountpoint,name,canmount,mounted -s mountpoint -t filesystem zroot/ROOT/default | \
while read _mp _name _canmount _mounted ; do
 ["$_canmount" = "off"] && continue
 ["$_mounted" = "yes"] && continue
 case "$_mp" in
 none|legacy)
 ;;
 *)
 #echo Making /ROOT/default${_mp} if missing
 [-d /ROOT/default${_mp}] || mkdir -p /ROOT/default${_mp}
 #echo Mounting $_name on /ROOT/default${_mp}
 mount -t zfs $_name /ROOT/default${_mp}
 [$? = 0] || { echo mount failed ; exit 1 ; }
 ;;
 esac
done

This same logic can be followed by an ‘unmount’ operation and NFS sharing operations, observing that
the nested datasets must be accessed from the virtual machine’s fstab(5). While this fact, plus the
components of the traditional NFS/TFTP/DHCPd infrastructure stack represent a reasonable level of
complexity, this complexity is justified in service of the goal and has proven to be quite robust.

With basic NFS sharing infrastructure in place, one additional tool is required to boot root-on-NFS
FreeBSD virtual machines using bhyveload(8). The github.com/stblassitude/boot_root_nfs utility
provides the ability to “taste” an NFS share for key information outside of a PXE environment. This
utility provides these dynamic parameters to bhyveload(8) provided by the NFS server:

-e boot.nfsroot.server=192.168.1.202
-e boot.nfsroot.nfshandle=X631083b5dea37b840a00040000000000e10000000000000000000000X
-e boot.nfsroot.nfshandlelen=28
-e boot.nfsroot.path=/mnt

These parameters, plus boot.netif.hwaddr, boot.netif.ip, boot.netif.name, boot.netif.netmask,
boot.nfsroot.path, vfs.root.mountfrom and vfs.root.mountfrom.options are all the boot loader
parameters needed to boot FreeBSD over NFS without PXE. A PXE environment can be added to this
storage infrastructure, enabling UEFI-GOP bhyve virtual machine booting, hardware machine booting
and potentially Xen PXE virtual machine booting. Finally, the wake(8) command can be used to “Wake
on LAN” physical machines for the purpose of network booting them. It is reasonable to propose that the
boot_root_nfs functionality be added to bhyveload(8).

Support Projects

In addition to the boot_root_nfs utility, the bhyve NE2000 emulated network adapter and ATA
emulation projects enable the network booting of FreeBSD 5.0 onward. This emulated NE2000 device is
scheduled for inclusion in bhyve(8) once adequate validation has been performed and the ATA
emulation project remains in development.

be(8) Proof-of-Concept Utility

be(8) is a proof-of-concept utility for the unified utility to create, share, manage and destroy boot
environments in the manner described above. It is intended to compliment the zpool(8) and zfs(8)
utilities and follows a similar syntax:

be create -l(ayout) freebsd zroot/ROOT/freebsd11.1
be mount zroot/ROOT/freebsd11.1
be install -a amd64 -r 11.1 zroot/ROOT/freebsd11.1
be sharenfs zroot/ROOT/freebsd11.1
be bootnfs zroot/ROOT/freebsd11.1

Because boot environments lack a default mountpoint on the hardware machine’s file system, it is
reasonable to mount them to the boot environment root path (/ROOT/*) to avoid confusion. Boot
environment zroot/ROOT/freebsd11.1 would logically be mounted on /ROOT/freebsd11.1 for
configuration, chroot(8) or jail(8) booting, and NFS sharing. In practice, the boot environment root
“ROOT” could be abbreviated “be” for brevity. This change is easily made to a bsdinstall(8) automation
script and could be an user-configurable option.

Ultimately, the be(8) proof of concept promises to enable simultaneous scenarios such as:

zroot/ROOT/freebsd11.1 → Hardware machine boot
zroot/ROOT/freebsd10.4 → chroot(8) isolated environment boot
zroot/ROOT/freebsd9.3 → jail(8) isolated environment boot
zroot/ROOT/freebsd8.4 → bhyve(8) virtual machine boot
zroot/ROOT/trueos → bhyve(8) virtual machine boot
zroot/ROOT/freenas → bhyve(8) virtual machine boot
zroot/ROOT/pfsense → bhyve(8) virtual machine boot
zroot/ROOT/illumos → bhyve(8) virtual machine boot
zroot/ROOT/openbsd → LAN PXE hardware machine boot

Block Storage-Backed VM Opportunities

Up to this point, we have proposed modifications to bsdinstall(8) to overcome some of its limitations
with for use with block-backed virtual machines, and leveraged its logic for use with file-backed isolated
environments and virtual machines. It is desirable to leverage the logic within bsdinstall(8) to provide
authentic FreeBSD installations to isolated and virtual targets. While a modified bsdinstall(8) can
perform reasonable scripted installations to block devices using UFS or ZFS, further exploration is in
order. Where be(8) can create and share boot environments, a complimentary utility could validate
(smart(8)12), create (dd(1) and truncate(1) disk images and zfs(8) zvols) and share (ctl(8) iSCSI,
Fibre Channel and ggatec(8)) block devices. In conjunction with be(8)’s ability to provision and share
file-level storage, a complimentary utility that provisions and shares block-level storage would constitute
the key building blocks of a Network Attached Storage (NAS) system. The most challenging aspect of
addressing the block-level challenges would be the rewriting of the UFS disk configuration steps of
bsdinstall(8), but the /usr/libexec/bsdinstall/zfsboot provides much of the infrastructure
needed for disk partitioning using multiple schemes. The pc-sysinstall(8) utility may also provide
reusable logic to achieve this goal.

12 Michael Dexter: diskctl(8): A permissively-licensed S.M.A.R.T. and raw disk command utility framework.
AsiaBSDCon 2016 | https://github.com/ctuffli/smart

Additional Challenges

While the FreeBSD operating system provides up-to-date OpenZFS and a performant NFSd, its tftpd(8)
service managed by inetd(8) is not designed for multiplicity use. While OpenZFS and NFSd can
provide dozens, if not hundreds of parallel boot environments and exports respectively, the in-base
tftpd(8) is only designed for a single TFTP directory share in service of PXE network booting.
Candidate alternatives to the FreeBSD in-base TFTPd include the net/freebsd-tftp port which was at
one point intended to replace the in-base tftpd(8) and tftp(8), ftp/tftp-hpa from the Linux kernel
project, ftp/atftp and net/utftpd, all of which are available under a number of desirable and
undesirable licenses. FreeBSD also includes a rudimentary implementation of the ZFS sharenfs
property, which allows a dataset to be shared using the in-base NFSd. Unfortunately, the ZFS sharenfs
functionality suffers from a lack of mountpoint conflict checking, the persistence of its private
/etc/zfs/exports configuration file after the disabling of the property, and unfigurable NFS sharing
options. Some of these shortcomings should not be difficult to address but raise the question of if full, in-
base PXE server functionality is desired in FreeBSD and other BSD Unix operating systems.

The in-base vmrun.sh bhyve virtual machine boot utility is also a candidate for improvement. vmrun.sh
currently lacks any notion of persistent virtual machine configurations akin to the jail.conf(5)
configuration format. While the preferred configuration syntax remains to be determined, the steady
advancement of the underlying tools will facilitate the development of in-base and external isolated and
virtualized target management tools towards the goal of their institutionalized life cycle management.

Finally, the 9P13 file sharing protocol developed for Bell Labs’ Plan 9 operating system would provide a
desirable compliment to NFS for local file-level virtual machine storage in the Networked Boot
Environment scenario, but it is not production-ready on FreeBSD.

Practical Applications

While a series of proposed bsdinstall(8) modifications can extend the utility’s usefulness to block-
backed virtual machines, the proof-of-concept be(8) is intended to provide the basis for a framework for
the creation and management of isolated environments and virtual machines. It intentionally uses sh(1)
OPTARG “flags” (i.e. -p <path>) to facilitate further scripting with sh(1). For example, a list of releases
could be cycled through using a for loop, provisioning each one with be(8). At present, bsdinstall(8)
can be fully-automated by generating automation scripts and calling them with the bsdinstall(8)
“script” verb. Like bsdinstall(8), be(8) also relies on reasonable defaults that are easily overridden
by the operator. This approach keeps the syntax as brief as possible for interactive command-line use and
as scriptable as possible for automated use.

13 https://en.wikipedia.org/wiki/9P_(protocol)

As a human and machine friendly isolated and virtual target deployment mechanism, be(8) can be used
to:

• Deploy isolated environments and virtual machines
• Preflight new boot environment installations14

• Investigate regressions by sequentially testing each major release and narrowing the scope to
individual commits in predetermined and automatically-determined ranges as needed15

• Determine which version of an OS can build its previous and subsequent releases
• Determine the minimum buildable and executable build settings for every release of an operating

system to facilitate rapid compilation
• Determine the optimal number of virtual CPUs for any given task on any given OS
• Determine the optimal number of parallel build “jobs”
• Offload operating system build tasks to external hardware machines
• Determine in an operating system is progressing or regressing with regard to metrics ranging

from the performance of various subsystems to the ratio of manual pages to components

Conclusions

The goal of institutionalizing isolated and virtualized targets in FreeBSD and other BSD Unix operating
systems is achievable primarily by removing the distinction between hardware and virtual machine
installations. This paper has demonstrated how the FreeBSD installer, bsdinstall(8) can be modified to
greatly enhance its use with block-backed virtual machines in service of this goal. This paper has also
demonstrated how the proof-of-concept be(8) utility could facilitate the provisioning of file-backed
isolated environments and virtual machines in a consistent manner for use with a hardware machine,
virtual machines, networked hardware machines, and isolated environments. The fine-grained
configuration and management of the resulting hosts can be performed with existing in-base and external
tools, but many opportunities exist for those configuration abilities to be brought in-base, considering that
many Unix administrative tasks have not changed significantly in decades. As such, “cloud” and
“container” computing can rightfully be referred to as Unix computing.

14 bhyve-Bootable OpenZFS Boot Environments http://callfortesting.org/bhyve-boot-environments/
15 Categorizing development commits by subsystem would greatly accelerate this process.

