Ibtrue

You can’'t handle the truth
http://libtrue.xyz/



GENERIC ARM

Andrew Turner
andrew@FreeBSD.org



mailto:andrew@FreeBSD.org

BOO]

o

0 G




About me

* Research Associate in the University of Cambridge
Computer Laboratory

* Freelance Software Engineer



About me

FreeBSD committer since 2010
Focus on arm and armoe4
Mayjor projects:

 ARM EABI

e armo4



History of FreeBSD/armveo

* FreeBSD on ARMve and ARMv7
e Started in August 2011
* |nitial support for:

* Marvell Armada XP

* TIi OMAP3, OMAP4, AM335x

* Nvidia Tegra 2



History of FreeBSD/armveo

* |Imported into HEAD in August 2012

 Added support for more SoCs (System on Chip)
 Broadcom BCM2835, BCM2836, (BCM2837)
* NXP (Freescale) i.MX5, i.MX6, Vybrid
* Samsung Exynos

* Allwinner (too many to list)



History of FreeBSD/armveo

* Altera/Intel FPGA Cycloneb, Arrial0
* Annarana

* Rockchip

e Xylinx Zync/

« QEMU

* gemod



What was needed for
GENERIC?



What was needed tor
GENERIC?

* Early hardware configuration

e Device enumeration

* Handling singleton functions



Early hardware
configuration



carly page tables

Problem: Each kernel had a
hard coded physical address



carly page tables

Solution: Runtime detection of
physical address, bulld page
tables around it



carly page tables

1.FiInd where In the physical address space the
kernel has been loaded

2.Build a page table around it



carly page tables

* How to find the kernels physical address?
* The program counter is just another register

 Can use it as asource in e.g. a move, bit-clear,
or load

 ARM has instructions to simplity pc-relative
MEemory access



carly page tables

* Need to create two mappings:

* |dentity mapping, VA == PA — keep running
when the MMU is enabled

* Kernel mapping — keep running when
branching to C code



PLATFORM

Problem: Everyone |just copiea
the early boot code with minor
changes.



PLATFORM

Solution: Pull out the common
code, create new functions to
handle per-SoC code



PLATFORM

Problem: Each SoC will need to
implement the same functions



PLATFORM

Solution: Detect the SoC, use
kob| to provide different
implementations of these

functions
(How PowerPC does it)



PLATFORM

Used early in the boot to handle the hardware
differences

Started as part of my “specitic_leg” project branch
Proved a GENERIC kernel was possible

e Almost the same kernel on a PANDABOARD and
Raspberry P



Map device early memory O R I\/l

e Minimal SMP example:

Start non-boot CPUs

static platform_method\t virt methods] ]

PLATFORMMETHOD(platform devmap init,
virt devmap init),
#ifdef SMP

PLATFORMMETHOD(platform mp start ap,
virt mp start ap),
PLATFORMMETHOD(platform mp setmaxid,
virt mp_setmaxid),
#endif
PLATFORMMETHOD END,
s
FDT PLATFORM DEF(virt, "virt",
"linux,dummy-virt", 1);

Tell the kernel how many
%) CPUs there are



PLATFORM

* Optional interfaces:

platform_attach — Called when probe was successful

platform_lastaddr — Returns the start of unusable
kernel address space

platform_gpio_init — Called just before the console is
ready, e.g. to configure GPIOs for the UART

platform_late_init — Called after the console is ready

platform_cpu_reset — Reboot the SoC



°LATFORM

Should only be
needed by the bus
code (FDT)



PLATFORM

« FDT_PLATFORM defines a platform that could be used

FDT PLATFORM DEF(virt, "virt", 0O,
"linux,dummy-virt", 1);

virt — Variable name, e.g. will use virt methods

e “virt" — Human readable name

e 0 — Unused (size of softc)

* “linux,dummy-virt” — FDT combatible string to match

1T — Number of iterations to busy wait in the early DELAY code



Device Enumeration



Flattened Device Tree

Problem (1): Memory mapped
devices are non-enumerable



Flattened Device Tree

Problem (Il): The kernel had a
hardcoded list of these devices
and their location



Flattened Device Tree

Solution: Have the firmware
provide a hardware description
to the kernel



Flattened Device Tree

 Added to arm before the armve project
* |s arequirement on armveo

* Also optionally used on AMD64, arm, armo4, 1386,
MIPS, PowerPC, and RISC-V



Flattened Device Tree

Unigue board

/dts-vl/; and SoC names
/ {
model = "My Board";
compatible = “manufacturer,my board","soc vendor,my soc";
memory {
reg = <0x10000000 0Ox20000000> ;
b Board RAM
soc {
compatible = "simple-bus";

#address-cells = <1>;
#size-cells = <1>;

my device { Device name,
compatible = "soc_vendor,my device"; used by the probe
reg = <0xf000000O 0x1000>; function

35

Device memory
range



Flattened Device Tree

ofwbus

Simnlghl Talu

simplebus?

t
net




Flattened Device Tree

e Probe function code:

static int

my_device probe(device_t dev) {
if (!ofw bus status okay(dev))
return (ENXIO);

if (!ofw bus is compatible(dev,
“soc_vendor,my device"))
return (ENXIO);

device set desc(dev, “My device”);
return (BUS_PROBE _DEFAULT);

J



—Handling singleton
functions



MULTIDELAY

Problem: Each timer controller
orovided It's own DELAY
implementation



MULTIDELAY

Solution: Each timer provides a
callback to handle the needed
delay



MULTIDELAY

* The timer drivers register a callback to perform the
delay:

arm_set _delay(pseudo_timer_delay, sc);

* Provides the callback, and an argument to pass



MULTIDELAY

e Example:

static void pseudo_timer delay(int usec, void *arg) {
struct pseudo timer softc *sc = arg;

uinté4 t first, last;

uint32 t counts per usec;

int32 t counts;

counts _per usec = (sc->timer frequency / 1000000) + 1;
counts = usec * counts_per usec;
first = pseudo_read counter(sc);
while (counts > 0) {
last = pseudo read counter(sc);
counts -= last - first;
first = last;

b
b



MULTIDELAY

* Default PLATFORM implementation;

static void TR
p%atform_delay(lnt BEEN 57 Pl ATFORM DEF
int counts;
for (; usec > 0; usec--)
for (counts =
plat obj->cls->delay _count;

counts > 0O; counts--)

cpufunc nullop();



INTRNG

Problem: The interrupt handling
code was only able to support a
single interrupt controller



INTRNG

Solution: New framework to
handle multiple interrupt
controllers



INTRNG

Started in 2012 as a Google Summer of Code
project by Jakub Klama

Worked on by Svatopluk Kraus and lan Lepore
Imported in the tree in 2015

Optional on arm and mips, required on armo64



INTRNG

 Based on a tree of interrupt controllers

* Any driver could be a controller, e.g. a GPIO driver



INTRNG

Creates a new newbus interface:

® pic_bind_intr

® DIC_Map_intr

® piC_setup_intr, pic_teardown_intr
® pic_post_filter

e pic_pre_lithread, pic_post_ithread



ARM interrupt
exception handler

INTRNG interrupt
dispatch

ARM Generic
Interrupt
Controller

Broadcom
Interrupt
Controller

GPIO driver

User inserts her SD
card in the SD slot




Putting It all together



Putting It together

* Create a test config

* Merged the VIRT (gemu) and ALLWINNER kernel
configs

* TJest booting on both

* Thanks to Emmanuel Vadot for testing on
Allwinner



Putting It together

* Emmanuel gave a presentation on FreeBSD on
Allwinner

1. Mentioned there is no GENERIC kernel for
armvo In subversion

2. | committed GENERIC

3. | pointed out his talk was out of date in the
guestion section



Putting It together

* After EuroBSDCon more SoCs were added

* Now support:
* All ARMv7 Allwinner (that FreeBSD supports)
* Tiam335x and OMAP4
* Raspberry Pi 2

* Nvidia Tegra 1124



Putting It together

armve now requires INTRNG
* Only 2 S0Cs are missing

Most armve configs use, or have patches for
PLATFORM & PLATFORM_SMP

* Except Marvell

Many support MULTIDELAY



Putting It together

* The release scripts have been updated

* Except BEAGLEBONE.conf and
CUBIEBOARD.conf

 NanoBSD updated to use GENERIC tor gemu

* Needs an update for Raspberry Pi 2



Remaining ISsues



Remaining ISsues

Not all kernel configurations have been converted
Old versions of U-Boot don’t work well with GENERIC
e Often assumes booting a kernel from a raw partition
 Missing APl or EFI support

Many SoCs hardcode the CPU count

pl310 needs a per-SoC function



summary



summary

* GENERIC on armve6 is possible
* Mostly engineering to fix replicated functions
* Need to support more SoCs

* (patches welcome)



Questions?



