
libtrue
You can’t handle the truth

http://libtrue.xyz/

GENERIC ARM
Andrew Turner

andrew@FreeBSD.org

mailto:andrew@FreeBSD.org

About me

• Research Associate in the University of Cambridge
Computer Laboratory

• Freelance Software Engineer

About me
• FreeBSD committer since 2010

• Focus on arm and arm64

• Major projects:

• ARM EABI

• arm64

History of FreeBSD/armv6
• FreeBSD on ARMv6 and ARMv7

• Started in August 2011

• Initial support for:

• Marvell Armada XP

• Ti OMAP3, OMAP4, AM335x

• Nvidia Tegra 2

History of FreeBSD/armv6
• Imported into HEAD in August 2012

• Added support for more SoCs (System on Chip)

• Broadcom BCM2835, BCM2836, (BCM2837)

• NXP (Freescale) i.MX5, i.MX6, Vybrid

• Samsung Exynos

• Allwinner (too many to list)

History of FreeBSD/armv6
• Altera/Intel FPGA Cyclone5, Arria10

• Annarana

• Rockchip

• Xylinx Zync7

• QEMU

• gem5

What was needed for
GENERIC?

What was needed for
GENERIC?

• Early hardware configuration

• Device enumeration

• Handling singleton functions

Early hardware
configuration

Early page tables

Problem: Each kernel had a
hard coded physical address

Early page tables

Solution: Runtime detection of
physical address, build page

tables around it

Early page tables

1.Find where in the physical address space the
kernel has been loaded

2.Build a page table around it

Early page tables
• How to find the kernels physical address?

• The program counter is just another register

• Can use it as a source in e.g. a move, bit-clear,
or load

• ARM has instructions to simplify pc-relative
memory access

Early page tables

• Need to create two mappings:

• Identity mapping, VA == PA — keep running
when the MMU is enabled

• Kernel mapping — keep running when
branching to C code

PLATFORM

Problem: Everyone just copied
the early boot code with minor

changes.

PLATFORM

Solution: Pull out the common
code, create new functions to

handle per-SoC code

PLATFORM

Problem: Each SoC will need to
implement the same functions

PLATFORM

Solution: Detect the SoC, use
kobj to provide different

implementations of these
functions

(How PowerPC does it)

PLATFORM
• Used early in the boot to handle the hardware

differences

• Started as part of my “specific_leg” project branch

• Proved a GENERIC kernel was possible

• Almost the same kernel on a PANDABOARD and
Raspberry Pi

PLATFORM
• Minimal SMP example:

static platform_method_t virt_methods[] = { 
 PLATFORMMETHOD(platform_devmap_init, 
 virt_devmap_init), 
#ifdef SMP 
 PLATFORMMETHOD(platform_mp_start_ap, 
 virt_mp_start_ap), 
 PLATFORMMETHOD(platform_mp_setmaxid, 
 virt_mp_setmaxid), 
#endif 
 PLATFORMMETHOD_END, 
}; 
FDT_PLATFORM_DEF(virt, "virt", 0, 
 "linux,dummy-virt", 1);

Map device early memory

Start non-boot CPUs

Tell the kernel how many
CPUs there are

PLATFORM
• Optional interfaces:

• platform_attach — Called when probe was successful

• platform_lastaddr — Returns the start of unusable
kernel address space

• platform_gpio_init — Called just before the console is
ready, e.g. to configure GPIOs for the UART

• platform_late_init — Called after the console is ready

• platform_cpu_reset — Reboot the SoC

PLATFORM

• Super optional interface:

• platform_probe — Probe to see if the kernel is
running on the supported hardware

Should only be
needed by the bus

code (FDT)

PLATFORM
• FDT_PLATFORM defines a platform that could be used

FDT_PLATFORM_DEF(virt, "virt", 0,  
 "linux,dummy-virt", 1);

• virt — Variable name, e.g. will use virt_methods

• “virt” — Human readable name

• 0 — Unused (size of softc)

• “linux,dummy-virt” — FDT combatible string to match

• 1 — Number of iterations to busy wait in the early DELAY code

Device Enumeration

Flattened Device Tree

Problem (I): Memory mapped
devices are non-enumerable

Flattened Device Tree

Problem (II): The kernel had a
hardcoded list of these devices

and their location

Flattened Device Tree

Solution: Have the firmware
provide a hardware description

to the kernel

Flattened Device Tree

• Added to arm before the armv6 project

• Is a requirement on armv6

• Also optionally used on AMD64, arm, arm64, i386,
MIPS, PowerPC, and RISC-V

Flattened Device Tree
/dts-v1/; 
/ { 
 model = "My Board"; 
 compatible = “manufacturer,my_board","soc_vendor,my_soc";  
 memory { 
 reg = <0x10000000 0x20000000>; 
 }; 

 soc { 
 compatible = "simple-bus"; 
 #address-cells = <1>; 
 #size-cells = <1>; 
 my_device { 
 compatible = "soc_vendor,my_device"; 
 reg = <0xf0000000 0x1000>; 
 }; 
 }; 

};

Device name,
used by the probe

function

Device memory
range

Unique board
and SoC names

Board RAM

Flattened Device Tree

ofwbus1
simplebus1
uart1 uart2 sata1
simplebus2
net1 spi1 sata2

Flattened Device Tree
• Probe function code:

static int 
my_device_probe(device_t dev) {  
 if (!ofw_bus_status_okay(dev))  
 return (ENXIO); 
 
 if (!ofw_bus_is_compatible(dev,  
 “soc_vendor,my_device"))  
 return (ENXIO); 
 
 device_set_desc(dev, “My device”);  
 return (BUS_PROBE_DEFAULT);  
}

Handling singleton
functions

MULTIDELAY

Problem: Each timer controller
provided it’s own DELAY

implementation

MULTIDELAY

Solution: Each timer provides a
callback to handle the needed

delay

MULTIDELAY

• The timer drivers register a callback to perform the
delay:

arm_set_delay(pseudo_timer_delay, sc);

• Provides the callback, and an argument to pass

MULTIDELAY
• Example:

static void pseudo_timer_delay(int usec, void *arg) {  
 struct pseudo_timer_softc *sc = arg;  
 uint64_t first, last;  
 uint32_t counts_per_usec;  
 int32_t counts; 
 
 counts_per_usec = (sc->timer_frequency / 1000000) + 1;  
 counts = usec * counts_per_usec;  
 first = pseudo_read_counter(sc);  
 while (counts > 0) {  
 last = pseudo_read_counter(sc);  
 counts -= last - first;  
 first = last; 
 } 
}

MULTIDELAY
• Default PLATFORM implementation:

static void 
platform_delay(int usec, void *arg) {  
 int counts; 
 for (; usec > 0; usec--) 
 for (counts = 
 plat_obj->cls->delay_count;  
 counts > 0; counts--) 
 cpufunc_nullop(); 
}

From
FDT_PLATFORM_DEF

INTRNG

Problem: The interrupt handling
code was only able to support a

single interrupt controller

INTRNG

Solution: New framework to
handle multiple interrupt

controllers

INTRNG

• Started in 2012 as a Google Summer of Code
project by Jakub Klama

• Worked on by Svatopluk Kraus and Ian Lepore

• Imported in the tree in 2015

• Optional on arm and mips, required on arm64

INTRNG

• Based on a tree of interrupt controllers

• Any driver could be a controller, e.g. a GPIO driver

INTRNG
• Creates a new newbus interface:

 • pic_bind_intr

 • pic_map_intr

 • pic_setup_intr, pic_teardown_intr

 • pic_post_filter

 • pic_pre_ithread, pic_post_ithread

INTRNG

GPIO driver

ARM Generic
Interrupt

Controller

Broadcom
Interrupt

Controller

INTRNG interrupt
dispatch

MMC driver

User inserts her SD
card in the SD slot

ARM interrupt
exception handler

Putting it all together

Putting it together
• Create a test config

• Merged the VIRT (qemu) and ALLWINNER kernel
configs

• Test booting on both

• Thanks to Emmanuel Vadot for testing on
Allwinner

Putting it together
• Emmanuel gave a presentation on FreeBSD on

Allwinner

1. Mentioned there is no GENERIC kernel for
armv6 in subversion

2. I committed GENERIC

3. I pointed out his talk was out of date in the
question section

Putting it together
• After EuroBSDCon more SoCs were added

• Now support:

• All ARMv7 Allwinner (that FreeBSD supports)

• Ti am335x and OMAP4

• Raspberry Pi 2

• Nvidia Tegra T124

Putting it together
• armv6 now requires INTRNG

• Only 2 SoCs are missing

• Most armv6 configs use, or have patches for
PLATFORM & PLATFORM_SMP

• Except Marvell

• Many support MULTIDELAY

Putting it together

• The release scripts have been updated

• Except BEAGLEBONE.conf and
CUBIEBOARD.conf

• NanoBSD updated to use GENERIC for qemu

• Needs an update for Raspberry Pi 2

Remaining issues

Remaining issues
• Not all kernel configurations have been converted

• Old versions of U-Boot don’t work well with GENERIC

• Often assumes booting a kernel from a raw partition

• Missing API or EFI support

• Many SoCs hardcode the CPU count

• pl310 needs a per-SoC function

Summary

Summary

• GENERIC on armv6 is possible

• Mostly engineering to fix replicated functions

• Need to support more SoCs

• (patches welcome)

Questions?

