secmodel _sandbox : An application sandbox for NetBSD
(draft)

Stephen Herwig
University of Maryland, College Park

Abtract

We introduce a new security model for NetBSD — sec-
model_sandbox — that allows per-process policies for re-
stricting privileges. Privileges correspond to kauth au-
thorization requests, such as a request to create a socket
or read a file, and policies specify the sandbox’s deci-
sion: deny, defer, or allow. Processes may apply mul-
tiple sandbox policies to themselves, in which case the
policies stack, and child processes inherit their parent’s
sandbox. Sandbox policies are expressed in Lua, and the
evaluation of policies uses NetBSD 7’s experimental in-
kernel Lua interpreter. As such, policies may express
static authorization decisions, or may register Lua func-
tions that secmodel_sandbox invokes for a decision.

1 Introduction

A process sandbox is a mechanism for limiting the privi-
leges of a process, as in restricting the operations the pro-
cess may perform, the resources it may use, or its view of
of the system. Sandboxes address the dual problems of
limiting the potential damage caused by running an un-
trusted binary, and mitigating the effects of exploitation
of a trusted binary. In either case, the goal is to restrict a
process to only the necessary privileges for the purported
task, and, in the latter case, to also drop privileges when
they are no longer needed.

Although NetBSD currently lacks a sandbox mech-
anism, sandbox implementations exist for various op-
erating systems. systrace [5], a multi-platform mecha-
nism used in earlier versions of NetBSD, and seccomp
[2], a Linux-specific implementation, exemplify the ap-
proach of specifying a per-process system call policy,
and use system call interposition to enforce the policy
filter. For systrace, the policy format is systrace-specific,
whereas seccomp specifies the policy as a BPF program.
OpenBSD’s pledge system call [4] offers a simplified
interface for dropping privileges: OpenBSD groups the

POSIX interface into categories, and allows processes to
whitelist or pledge their use of certain categories; an at-
tempt to perform an operation from a non-pledged cate-
gory kills the process.

We implement an application sandbox for NetBSD,
secmodel_sandbox, that allows per-process restriction
of privileges. secmodel_sandbox plugs into the kauth
framework, and uses NetBSD’s support for in-kernel Lua
[7] to both specify and evaluate sandbox policies. We
are developing several facilities with secmodel_sandbox,
such as a secure chroot and a partial emulation of
OpenBSD’s pledge system call.

2 NetBSD Overview

2.1 kauth

NetBSD 4.0 introduced the kauth kernel subsystem [3]
— a clean room implementation of Apple’s kauth frame-
work [6] for OS X — to handle authorization requests for
privileged operations. Privileged operations are repre-
sented as triples of the form (scope, action, optional sub-
action). The predefined scopes are system, process,
network, machdep, device, and vnode, each forming
a namespace that is further refined by the action and sub-
action components. For instance, the operation to create
a socket is identified by the triple (network, socket,
open), and the operation to read a file by (vnode,
read data).

Some authorizations, such as (process, nice), are
triggered by a single system call (setpriority); some, such
as (system, mount, update), are triggered when a
system call (mount) is called with specific arguments
(the MNT_UPDATE flag); and others, such as (system,
filehandle) may be triggered by more than one sys-
tem call (fthopen and fhstat). Many system calls do not
trigger a kauth request.

kauth uses an observer pattern whereby listeners reg-
ister for operation requests for a given scope; when a re-

quest occurs, each listener is called.

Each listener receives as arguments the operation
triple, the credentials of the object (typically, the pro-
cess) that triggered the authorization request, as well as
additional context specific to the request.

Each listener returns a decision: either allow, deny,
or defer. If any listener returns deny, the request
is denied. If at least one listener returns allow and
none returns deny, the request is allowed. If all listen-
ers return defer, the decision is scope-dependent. For
all scopes other than the vnode scope, the result is to
deny the authorization. For the vnode scope, the autho-
rization request contains a “fall-back™ decision, which
nearly always specifies a decision conforming to tradi-
tional BSD4.4 file access permissions.

2.2 secmodel

While the NetBSD kernel source contains many listen-
ers (typically in accordance with kernel configuration
options), the secmodel framework offers a lightweight
convention for developing and managing a set of lis-
teners that represents a larger security model. By
default, NetBSD uses secmodel_bsd44, which imple-
ments the traditional security model based on 4.4BSD,
and which itself is composed of three separate mod-
els: secmodel_suser, secmodel_securelevel, and sec-
model_extensions.

An important, subtle point with the default security
model is that many authorization requests are deferred,
relying on kauth’s default behavior when all listeners re-
turn defer to fully implement the policy.

3 Design

We developed secmodel_sandbox as a loadable kernel
module with companion user-space library 1ibsandbox.
By convention, we install the device file for sec-
model_sandbox at /dev/sandbox.

A process interacts with secmodel_sandbox via the
sandbox (const char *script, int flags) func-
tion of libsandbox. The argument script is a Lua
script that specifies the sandbox policy. The flag argu-
ment specifies the action to take when a process attempts
a denied operation: a value of 0 means that the oper-
ation returns an appropriate errno as dictated by kauth
(typically EACCES for kauth’s vnode scope and EPERM
for all other scopes); a value of SANDBOX_ON_DENY KILL
specifies the pledge behavior of killing the process. The
sandbox function packages these arguments into a struct
and, via an ioctl call, passes the struct to /dev/sandbox.

secmodel_sandbox evaluates the Lua script in a Lua
environment that is pre-populated with a sandbox Lua

module. The sandbox Lua module allows a script to set
policy rules via the following interface:

sandbox.default (result)
sandbox.allow(req)
sandbox .deny (req)
sandbox.on(req, func)

The sandbox.default function specifies a result of
either ‘allow’, ‘deny’, or ‘defer’. The result is the
sandbox’s decision for any kauth request for which the
script does not specify a more specific rule.

The sandbox.allow and sandbox.deny specify al-
low and deny rules, respectively, for the kauth request
given as req.

The sandbox Lua module uses strings of the form
‘scope.action.subaction’ torepresent the requests;
hence, a request to open a socket corresponds to the
string ‘network.socket.open’, and a request to read
a file to ‘vnode.read _data’. A script may specify a
complete request name, or a prefix. When the process
triggers an authorization request, secmodel_sandbox will
select the policy rule that has the longest prefix match
with the given request. As an example, a sandbox policy
script of:

sandbox.default(‘deny’)
sandbox.allow(‘network’)

would allow any request in the network scope, but would
deny requests from all other scopes.

The sandbox.on Lua function registers a Lua func-
tion func to be called for the given kauth request. The
signature for func is:

func(req, cred, arg0, argl, arg2, arg3)

where req is the kauth request that generated the call-
back, cred is a Lua table that represents the credentials
of the requesting object or process, and the remaining ar-
guments are request-specific. All parameters for func
exist only in the Lua environment; manipulating the val-
ues does not affect the underlying C objects that they rep-
resent.

For many requests, the values for arg0 through arg3
are nil, as the kauth request carries no additional con-
text. For the requests that do contain context, we trans-
late the context into appropriate Lua values. For exam-
ple, for the request ‘network.socket.open’, the ar-
guments are Lua integers representing the arguments to
the socket system call that triggered the request. For
clarity in script writing, we pre-populate the sandbox
Lua module with symbols for common constants, such
as sandbox.AF_INET and sandbox.SOCK_STREAM. For
requests in the process scope, arg0 is a Lua table that
represents a subset of the fields of the struct proc that

is the target of the request, such as the pid, ppid, comm
(program name), and nice value. Callback functions for
the vnode scope receive as arg0O a Lua table that con-
tains the pathname and file status information of the tar-
get vinode. Completely representing the context with Lua
values is an ongoing effort.

4 Sandbox Implementation

Our design and implementation of secmodel_sandbox
considered several important requirements and features.
First, while expressing rules in Lua is elegant, having to
call into Lua to find a matching rule for each request is
not. Thus, we implemented secmodel_sandbox so that-
evaluating the policy script “compiles” the rules into a
prefix tree, mimicking the natural hierarchy provided by
the (scope, action, subaction) format of requests. Thus,
secmodel_sandbox can quickly find a matching rule, and
only needs to call into Lua for functional rules — rules
specified as Lua functions via sandbox . on.

Second, we wanted to allow sandboxes to be dynamic;
that is, allow a functional rule to set other rules. For ex-
ample, a script might create rules based on the requesting
credential, as in the following, which installs a functional
rule for the network scope so that different rules may be
created for the root user and for ordinary users:

sandbox.on(‘network’, function(rule, cred)
if cred.euid == 0 then
sandbox.allow(‘network.bind’)

else
sandbox.deny (‘network.bind’)

end
end)

Third, we had to be mindful of the subtleties of the
default security model, particularly its dependency on
kauth’s default decisions when all listeners return defer,
so as not to allow sandboxes to elevate a process’s priv-
ileges beyond the default model. In a similar vein, we
needed to isolate multiple sandboxes on a single process
so that the process is not able to install a new sandbox
that loosens or undoes a rule of an existing sandbox.

Finally, in order to ensure that child processes inherit
the sandboxes of their parent, but that, after process cre-
ation, parent and child may apply additional sandboxes
independently of one another, we had to extend the nor-
mal forking behavior.

4.1 Sandbox creation

When a process sets a sandbox policy via 1ibsandbox,
the kernel creates a new sandbox, represented as a

struct sandbox. A sandbox contains two main items:
a Lua state and a ruleset. The Lua state is the Lua en-
vironment in which secmodel_sandbox evaluates all Lua
code for that particluar sandbox. The ruleset is a pre-
fix tree that secmodel_sandbox searches during a kauth
request to find the sandbox’s matching rule.

Before secmodel_sandbox evaluates the policy script
in the newly created Lua state, secmodel_sandbox adds
the sandbox Lua functions (e.g., sandbox.allow) and
constants (e.g., sandbox.AF_INET) to the state. Each
sandbox Lua function is a closure that contains a pointer
to the struct sandbox. In Lua terminology, the
struct sandbox is a light userdata upvalue.

When the script calls a sandbox Lua function, the
function — which is implemented in C code — performs
argument checking, retrieves the ruleset from the struct
sandbox upvalue, and inserts the rule and the rule’s
value into the ruleset.

For sandbox.allow, sandbox.deny, and
sandbox.default, the rule’s value is a trilean:
one of KAUTH_RESULT_ALLOW, KAUTH_RESULT_DENY,
or KAUTH_RESULT_DEFER, as defined in sys/kauth.h.
For sandbox.on, the value is an index into Lua’s
registry. The Lua registry is a global table that can
only be accessed from C code. When a script invokes
sandbox.on, secmodel_sandbox stores the callback
function at an unused index in the Lua registry, and the
ruleset stores this index as the rule’s value.

After evaluating the policy script, secmodel_sandbox
attaches the struct sandox to the current process’s
credentials. The data that secmodel_sandbox attaches to
acredential is in fact a list of struct sandbox’s, to sup-
port allowing a process to apply multiple sandboxes dur-
ing the course of its execution. If the list does not ex-
ist, secmodel_sandbox first creates it and inserts the new
sandbox; otherwise, the new struct sandbox is added
to the existing list.

Storing struct sandbox as an upvalue supports the
creation of dynamic rules; that is, a sandbox.on call-
back function that creates rules for other requests as part
of its evaluation. If the callback function creates new
rules by calling any of the sandbox Lua module func-
tions, then the C implementations of these functions can
immediately find the corresponding ruleset for the given
Lua state.

4.2 Evaluating Authorization Requests

secmodel_sandbox registers listeners for all kauth
scopes. When one of the secmodel_sandbox listeners
is called, the listener checks whether a list of struct
sandboxs is attached to the requesting credential. If a
list is not attached, the listener defers; if a list is attached,
secmodel_sandbox searches the ruleset of each struct

sandbox for a value, calling into Lua if the value repre-
sents a registry index for a callback function.

If any sandbox in the list returns deny, sec-
model_sandox returns deny for the request; if at least
one sandbox returns allow and none returns deny, sec-
model_sandbox returns defer, not allow as one would
presume. The reason for “converting” allow to defer is
due to subtleties in the implementation of kauth(9) and of
the default security models that implement the traditional
BSD4.4 security policy. In particular, since a large part
of the traditional security model is implemented by hav-
ing all listeners defer, and thus relying on kauth’s “fall-
back’ behavior, secmodel_sandbox must also defer, so as
not to allow the elevation of privileges.

4.3 Process forking

In NetBSD, a process’s credentials are represented by the
kauth_cred_t type. The kauth framework emits events
corresponding to a credential’s life-cycle via the cred
scope. As with other kauth scopes, listeners may register
callback functions.

When a process forks, the normal behavior is for the
parent and child to share the same kauth_cred_t, and to
simply increment the credential’s reference count. Dur-
ing the fork process, however, the kauth framework emits
a fork event, thereby allowing for other behavior. For
the fork event, the listener callback functions receive
the struct proc of the parent and child, as well as the
shared credential.

secmodel_sandbox registers a callback for credential
events. During a fork event, secmodel_sandbox checks
whether the credential contains a list of sandboxes. If
yes, then secmodel_sandbox creates a new credential for
the child process that is identical to the parent’s creden-
tial, with the exception that the child credential contains a
new list head for the list of sandboxes. Althought the list
head of the parent and child are different, they both point
to the same initial struct sandbox. Thus, each sand-
boxed process has its own kauth_cred_t and its own
sandbox list head, but the individual struct sandboxs
are shared among the related processes, and hence refer-
ence counted.

The handling of sandboxes in this manner means that
the child is restricted by the same sandboxes as its parent
at the time of the child’s creation, but that after the child’s
creation, parent and child may add additional sandbox
policies that do not affect the other process.

4.4 Mapping vnodes to pathnames

The request context for the the vnode kauth scope con-
tains the vnode that is the target of the operation. For a

sandbox policy, however, it is much more natural to work
with pathnames rather than vnodes.

secmodel_sandbox uses methods similar to those in
sys/kern/vfs_getcwd. c to attempt to retrieve a path-
name. The method is to search for the basename of
the vnode in the namei cache via cache_revlookup,
and then walk back to the root vnode via interspersing
calls to VOP_LOOKUP (to retrieve a parent vnode), and
VOP_READDIR (to find the path name component of the
child vnode). While we would expect the initial vnode
to be present in the cache, an obvious weakness of this
method is the reliance on a cache hit, which cannot be
gauranteed.

4.5 Safeguards

Evaluating user-provided Lua scripts in the kernel raises
a few concerns. An obvious concern is denial-of-service
caused by a Lua script with an infinite loop. While not
yet implemented, the defense is straight-forward, and
used in the Lua kernel module to handle creating Lua
states with luactl.

In short, as part of its C API, Lua provides the func-
tion lua_sethook for an application to register a C hook
function to be called at various Lua VM events. In par-
ticular, an application can register to receive a callback
after every n Lua VM instructions. The approach is
therefore to set a hook function to be called after some
maximum number of VM instructions; if the hook is
called, the hook stops execution of the Lua VM by call-
ing lua_error. Lua allows only one hook function per
Lua state; in order to “restore” the VM instruction count
back to zero, the hook function must be reset before ev-
ery evaluation of a Lua script or function.

Another concern is that the struct sandboxs or
the callbacks registered via sandbox.on might be ac-
cessed and modified from Lua code. Values in the
Lua registry and upvalues are, provided Lua’s debug li-
brary is not loaded, only accessible from C code. sec-
model_sandbox does not load the debug library. More-
over, secmodel_sandbox does not provide a require
function or any other means to load additional Lua li-
braries.

5 Applications
In this section, we describe the tools and facilities we are

developing with secmodel_sandbox.

5.1 Secure chroot

One application that we are developing is a se-
cure chroot. In 2011, Aleksey Cheusov proposed

the secmodel_securechroot security model [1]. sec-
model_securechroot was developed as a kernel module,
and once loaded, modifies the chroot system call to place
additional restrictions on the chrooted process. The re-
strictions impose process containment by preventing pro-
cess’s with one root directory from viewing information
about processes with a different root directory, as well as
denying the chrooted process several system-wide oper-
ations, such as rebooting, modifying sysctls, or adding
devices.

On NetBSD’s tech-kern mailing list, there was
disagreement over the exact operations that should be
allowed and denied within a secure chroot. More-
over, some users expressed a desire to not override
the default chroot behavior, but rather have an addi-
tional system call for secure chroot, so that users could
choose the level of restriction for each chrooted process.
While some of the changes to kauth needed to support
secmodel_sandbox were merged into the NetBSD ker-
nel source, the secmodel itself was not.

We are developing an implementation of sec-
model_securechroot as an auxiliary function,
sandbox_securechroot, in libsandbox, with an
associated command-line tool. Development of the
tool demonstrates that previously proposed secmodels
can be implemented using secmodel_sandbox, and that
secmodel_sandbox offers users flexibility in choosing
the proper level of containment.

5.2 pledge

We are also developing the libsandbox auxiliary
function sandbox_pledge, which attempts to emulate
OpenBSD’s pledge system call using secmodel_sandbox.

A sandbox policy that mimics pledge is essentially a
whitelist: explicitly allowing actions that correspond to
a given category, and denying all others. Certain cate-
gories are easily implemented. For instance, the pledge
categories that correspond to the access and modifica-
tion of file metadata, such as rpath, wpath, fattr, and
chown, are, with small exceptions, handled by appropri-
ate vnode scope rules. Similarly, categories that limit
network access to certain domains, such as inet and
unix, are covered by rules for ‘network.bind’ and
‘network.socket.open’.

Several pledge categories, however, reference system
calls that, in NetBSD, do not trigger kauth requests. For
example, the flock category that allows file locking or
the dns category that allows DNS network transactions,
lack apprporiate kauth requests. As a result such cate-
gories cannot be implemented.

6 Conclusion

We have introduced and developed a new security model,
secmodel_sandbox, for NetBSD that allows per-process
specification and restriction of privileges. While several
secmodels exist for NetBSD, secmodel_sandbox is novel
in its use of NetBSD’s in-kernel Lua interpreter to allow
processes to express privileges, subject to the bounds of
the traditional BSD4.4 security model. We designed sec-
model_sandbox to limit excessive calls into Lua, to allow
sandboxes to dynamically create rules during the execu-
tion of a process, to allow a process to specify multiple,
isolated, sandboxes during the course of its execution,
and to ensure that a child process inherits the sandbox
of its parent. We are developing concrete, familiar, ap-
plications in order to demonstrate our design’s ease and
flexibility in developing secure software.

References

[1] Aleksey Cheusov. RFC: New security model sec-
model_securechroot(9). URL: https : / / mail -
index . netbsd . org/tech-kern/2011/07/
09/msg010903.html.

[2] Jake Edge. “A seccomp overview”. In: (Sept.
2015). URL: https : //lwn . net / Articles /
656307/.

[3] Elad Efrat. “Recent Security Enhancements in
NetBSD”. In: Proceeding of EuroBSDCon 2006.
2006. URL: http://www.netbsd.org/~elad/
recent/recent06.pdf.

[4] pledge(2). OpenBSD 6.0.

[S] Niels Provos. “Improving Host Security with Sys-
tem Call Policies”. In: Proceeedings of the 12th
Conference on USENIX Security Symposium - Vol-
ume 12. 2003.

[6] Technical Note TN2127: Kernel Authorization.
Tech. rep. Apple Inc., 2010. URL: https : / /
developer . apple . com/ library / content /
technotes/tn2127/_index.html.

[71 Lourival Vieira Neto et al. “Scriptable Operating
Systems with Lua”. In: Proceedings of the 10th
ACM Symposium on Dynamic Languages. 2014.

