
WHY AND GOALS

Improving the FreeBSD Build 1 BSDCan 2016

Overview
• Overview of the build
•  Improvements to the build
• Planned improvements
• Wishlist

Improving the FreeBSD Build 2 BSDCan 2016

OVERVIEW OF THE BUILD

Improving the FreeBSD Build 3 BSDCan 2016

Building recursively
•  Build targets split into multiple directories

•  bin/ sbin/ lib/ usr.bin/ etc/
•  Visited by tree walks using recursive make all
•  Order determined by SUBDIR lists

•  bin/Makefile: SUBDIR= sh cat chflags …
•  Generally one directory per SUBDIR list is built at a time unless

SUBDIR_PARALLEL is defined (10.0+)
•  lib/Makefile: SUBDIR_DEPEND_libc= libcompiler_rt

•  Subdirectory builds will not build dependencies from other
directories

•  Top-level has extra hacks to build cross-directory dependency
graphs using subdir-build __L targets
•  gnu/lib/libgcc__L: lib/libc__L

Recursive make considered harmful

Improving the FreeBSD Build 4 BSDCan 2016

Building recursively in parallel
Serial build (–j4)

SUBDIR= a b c

SUBDIR_PARALLEL (–j4)

SUBDIR= a b c
cd a &&
make –j4

cd b &&
make –j4

cd c &&
make –j4

cd a &&
make –j2

cd b &&
make –j1

cd c &&
make –j1

*(Job handling is not accurate)

Improving the FreeBSD Build 5 BSDCan 2016

Building FreeBSD
•  make buildworld

•  Used for building the FreeBSD userland
•  The only reliable way to build
•  Bootstraps everything needed for the build
•  Overall a simple recursive build but very complex in the details

•  make buildkernel
•  A non-recursive build using a massive Makefile generated by config

that reads sys/conf/files
•  Modules are built recursively

•  make universe
•  Builds buildworld and buildkernel for all supported architectures and

kernel configs

Improving the FreeBSD Build 6 BSDCan 2016

Buildworld
•  Has a “minimum supported release” (MSR)

•  Only supports building from FreeBSD
•  Documented upgrade policy is only from last Major Release
•  Buildworld on head (11.0) supports building from ~9.1 currently

•  Supports cross-build to build binaries for a different architecture
than the host
•  Must build native host binaries for build tools
•  Typically done even for native builds for reproducibility
•  Host build

•  Uses host headers and libraries
•  Target build

•  Uses a sysroot of staged headers and libraries from the tree
•  Builds using a Toolchain tailored for the target

Improving the FreeBSD Build 7 BSDCan 2016

Buildworld
•  make legacy (Host)

•  Libegacy for compatibility shims to meet MSR for build tools.
•  make bootstrap-tools (Host)

•  Updated version of tools to support MSR
•  make clean

•  If not using –DNO_CLEAN
•  Avoids broken incremental build (csu, tools, CFLAGS, …)

•  make obj
•  Creates a temporary object directory for everything to build into

•  make build-tools (Host)
•  Some directories have special tools/generators needed to build themselves that are

built here
•  make cross-tools (Host)

•  Builds the Toolchain with default Target/sysroot set to $WORLDTMP ($OBJDIR/tmp)
Continued…

Bootstrapping ad nauseam

Improving the FreeBSD Build 8 BSDCan 2016

Buildworld
•  make includes (Target)

•  Stages all headers into $WORLDTMP
•  make libraries (Target)

•  Builds all libraries for later linkage and stages into $WORLDTMP
•  Multi-phase bootstrappy itself: _prereq_libs, _startup_libs, _prebuild_libs,

_generic_libs
•  Uses directory/libname__L: targets to build dependency graph and does a non-

recursive build of some, and a recursive of lib/ directories.
•  make depend (Target)

•  Runs the preprocessor to build .depend files for clean parallel builds and for later
incremental build
•  .depend: foo.o: /usr/include/stdlib.h /usr/include/stdio.h …

•  make everything (Target)
•  Finally builds everything via make all, including libraries and a compiler “again”.

•  make libcompat (Target)
•  Lib32 (64bit targets) and Libsoft (armv6)

Bootstrapping ad nauseam

Improving the FreeBSD Build 9 BSDCan 2016

Installing
• make installworld

•  Installs userland

• make installkernel
•  Installs the kernel and modules

Improving the FreeBSD Build 10 BSDCan 2016

IMPROVEMENTS TO THE BUILD

Improving the FreeBSD Build 11 BSDCan 2016

WITH_DIRDEPS_BUILD
•  Presented by Simon Gerraty in 2014, merged BSDCan 2015
•  Originally named WITH_META_MODE but renamed so that name

could be used for something else
•  A non-recursive build that works and builds dependencies from top-

level or a subdirectory
•  Uses checked-in Makefile.depend files in every directory that are auto

generated from filemon(4) data containing a list of directories to build
before the current one

•  Avoids all of the tree walks and dependency hell lists from buildworld
•  Optional dependencies are a problem, so not as viable for a default

build
•  Very useful for downstream vendors who have a static option list
•  Its foundation brought in several features that are useful for

buildworld, etc.

Improving the FreeBSD Build 12 BSDCan 2016

Parallel install
• make installkernel –j
• make installworld –j

•  Historically not safe to do but now mostly safe.
•  Installs rtld, and then libc first before installing the rest of the

system.
•  A proper install would be a full dependency-ordered install
•  The install order is actually more correct in parallel due to

SUBDIR_DEPEND lines vs serially as the SUBDIR ordering is
unintentionally no longer correct after the addition of
SUBDIR_PARALLEL to lib/Makefile
•  Fixing this could be done through making serial traversals in

bsd.subdir.mk respect SUBDIR_DEPEND lines.

Improving the FreeBSD Build 13 BSDCan 2016

STANDALONE_TARGETS
•  Some targets done in tree walks will not have any

interdependencies
•  Always build in parallel (SUBDIR_PARALLEL) without using

any SUBDIR_DEPEND
•  make all-man buildconfig buildfiles buildincludes check

checkdpadd clean cleandepend cleandir cleanilinks cleanobj
files includes installconfig installincludes installfiles maninstall
manlint obj objlink

•  When building with –DNO_ROOT (images) then make install
is also ran in parallel

•  Defined in share/mk/bsd.subdir.mk
•  Can be appended to in src.conf for downstream

Improving simple tree walks

Improving the FreeBSD Build 14 BSDCan 2016

WITH_CCACHE_BUILD
•  Uses ccache for all compliations
•  Why built-in and not PATH or CC?

•  No preprocessor cache
•  No assembler cache
•  No linking cache

•  Only helps for broken or overly aggressive incremental builds
•  Stats for a clean make buildworld (95% confidence, ZFS):

•  20% slower on empty cache
•  51% faster with full cache

•  Reveals a lot of overhead such as make depend, tree walks and sysroot
staging

•  66% faster with full cache and WITH_FAST_DEPEND

Compiler output caching

Improving the FreeBSD Build 15 BSDCan 2016

WITH_FAST_DEPEND
•  Normally make depend runs cc –E and stores the contents

in .depend
•  Target.o: /usr/include/stdlib.h /usr/include/stdio.h …
•  Preprocessor ran again during compilation in make all; the

preprocessed .i files are not stored or reused
•  make depend also ensures all files are generated for build
•  .depend files are used to apply header dependencies to proper

source files
•  Without a .depend then all source files are assumed to depend on all

headers: ${OBJS}: ${SRCS:M*.h} to allow clean parallel builds
•  DPSRCS used to contain generated files
•  .depend also contains static prog dependencies:

•  cat.full: /usr/lib/libc.a

How it all worked before

Improving the FreeBSD Build 16 BSDCan 2016

WITH_FAST_DEPEND
•  No more make depend tree walk
•  .depend.target.o files generated during compilation with GCC

3.0-era –MM flags.
•  The .depend.target.o files are now only useful for incremental

builds
•  Clean parallel builds rely on beforebuild hook on make

depend to generate all source files before building any objects
•  A .depend is still generated for static prog dependencies
•  Stats (95% confidence, ZFS):

•  make buildworld: 16% time saved
•  make buildkernel: 35% time saved

How it works now

Improving the FreeBSD Build 17 BSDCan 2016

WITH_FAST_DEPEND
•  The –MM flags are only applied to objects that are in OBJS/POBJS/

SOBJS/DEPENDOBJS from DEPENDSRCS/SRCS
•  Avoids generating dependency files for special cases like the csu build that

don’t need them or introduce duplicate depencencies that confuse SUFFIX
rules and result in multiple source files being compiled at once

•  OBJS_DEPEND_GUESS and OBJS_DEPEND_GUESS.target.o can
be used to add a dependency to an object target if there is
no .depend.target.o for it yet

•  Files included by new bmake feature .dinclude<> done from
bsd.dep.mk directly rather than generating a loop inside of .depend
•  .depend inclusion in make has special handling for dependencies on missing

files
•  “Ignoring stale dependency”

Details

Improving the FreeBSD Build 18 BSDCan 2016

WITH_FAST_DEPEND
• DPSRCS is not really needed anymore

•  Mostly just headers in it but they can safely be in SRCS (for many
years now)

•  Special dependencies (generators) should not be in SRCS or
DPSRCS, just create actual dependency rules for them
•  file.c: generator

•  ./generator > ${.TARGET}
•  generator: generator.c

•  ${CC} …

•  The removal of make depend tree walk can harm some
downstream builds that rely on a 2-pass parsing of
Makefiles but should be very rare

Downstream changes needed

Improving the FreeBSD Build 19 BSDCan 2016

WITH_SYSTEM_COMPILER
•  make buildworld normally builds clang twice: bootstrap (Host)

and the one to be installed (Target)
•  make kernel-toolchain normally builds clang once: bootstrap

(Host)
•  make universe normally builds clang N*2 times, where N is the

number of architectures supported, for the same reason as
buildworld. N of those are the bootstrap version with the only
difference being the default sysroot and target architecture.

•  Why build a bootstrap one at all rather than use /usr/bin/cc?
•  Major version upgrades
•  Bug fixes
•  Newly supported CFLAGS (like -fformat-extensions)
•  Reproducibility

Opportunistically building clang less

Improving the FreeBSD Build 20 BSDCan 2016

WITH_SYSTEM_COMPILER
•  __FreeBSD_cc_version is incremented on any change to the

compiler that warrants rebuilds, and for adding new
architecture –target support.

•  If the major version and __FreeBSD_cc_version of ${CC}
matches what is stored in the tree, then just use it as an
external compiler.
•  This adds in -target and --sysroot flags into the build to build for the

given TARGET.TARGET_ARCH and the build’s sysroot.
•  GCC does not support –target so this logic is only used if building for

the same architecture as the host. A bootstrap cross-compiler for
cross architecture builds is still needed.

•  Not the same as WITHOUT_CROSS_COMPILER, which
always builds with /usr/bin/cc.

Opportunistically building clang less

Improving the FreeBSD Build 21 BSDCan 2016

WITH_SYSTEM_COMPILER
•  In tree

•  __FreeBSD_cc_version fetched from tree with awk
•  lib/clang/freebsd_cc_version.h

•  #define FREEBSD_CC_VERSION
•  gnu/usr.bin/cc/cc_tools/freebsd-native.h

•  #define FBSD_CC_VER

•  Major version fetched from tree with awk
•  lib/clang/include/clang/Basic/Version.inc

•  #define CLANG_VERSION
•  contrib/gcc/BASE-VER

•  ${CC}
•  echo "__FreeBSD_cc_version” | ${CC} -E - | tail –n 1

Getting the versions

Improving the FreeBSD Build 22 BSDCan 2016

Automatic object directory creation
•  Create object directory without needing make obj first

•  Avoids an expensive tree walk for make buildworld
•  Avoids mistakes of building without an object directory and having files

in both the source directory and object directory. That can break
buildworld as well.

•  Works for the WITH_DIRDEPS_BUILD build system already as
it was imported for that feature

•  Not yet ready for subdirectories / make buildworld but close
•  Also with this change comes changing OBJDIR to be

•  ${MAKEOBJDIRPREFIX}/${SRCTOP}/${TARGET}.${TARGET_ARCH}/${RELDIR}
•  /usr/obj/usr/src/amd64.amd64/bin/sh

•  This organizes the OBJDIR for multiple checkouts better

WITH_AUTO_OBJ

Improving the FreeBSD Build 23 BSDCan 2016

Filemon(4)
•  Originally implemented by the late John Birrell and Juniper in 2009
•  A ton of performance improvements and stability fixes have gone into

it recently
•  Tracks all files read/written/executed during the execution of a

process
•  It does what GCC –MM does but for everything
•  Available from a C API, script(1), and bmake
•  Creates a log

•  E /bin/sh
•  R /usr/include/stdio.h
•  W /usr/obj/usr/src/bin/sh/sh.full

•  script –f log command
•  log.filemon

Track all the dependencies

Improving the FreeBSD Build 24 BSDCan 2016

Filemon(4)
•  Fixed bugs

•  Looping on all processes in syscalls looking for filemon tracer, now
uses struct proc.p_filemon
•  This makes the module no longer self-contained but is worth it for

performance
•  Many races
•  Error handling
•  Credential handling

•  Todo
•  Stop using syscall hooks by improving EVENTHANDLER(9) or adding

a new syscall trace framework
•  Will allow unloading
•  Some at(2) functions are missing or improperly handled

Changes and remaining work

Improving the FreeBSD Build 25 BSDCan 2016

Bmake Meta Mode
•  Presented by Simon Gerraty in 2014
•  .MAKE.MODE=meta
•  Provides functionality to have a reliable incremental build

without cleaning
•  Creates a target.o.meta file for every target as it is built
•  Considering its .meta file, rebuilds a target if:

•  The command to build changes from last time
•  Such as different CFLAGS or a different path’d compiler

•  Files read, written, executed or linked are missing
•  Written is also important for staging

•  Filemon data is not present and filemon is enabled
•  A .meta file is missing (enabled the feature vs last build not enabled)
•  Files read/executed/linked to are newer than the target

Rebuild cases

Improving the FreeBSD Build 26 BSDCan 2016

Bmake Meta Mode
Meta data file /usr/obj/root/git/freebsd/bin/sh/sh.full.meta
CMD cc -O2 -pipe -DSHELL -I. -I/root/git/freebsd/bin/sh -g -std=gnu99 -fstack-protecto
r-strong -Wsystem-headers -Werror -Wall -Wno-format-y2k -Wno-uninitialized -Wno-pointe
r-sign -Wno-empty-body -Wno-string-plus-int -Wno-unused-const-variable -Wno-tautologic
al-compare -Wno-unused-value -Wno-parentheses-equality -Wno-unused-function -Wno-enum-
conversion -Wno-unused-local-typedef -Wno-switch -Wno-switch-enum -Wno-knr-promoted-pa
rameter -fcolor-diagnostics -Qunused-arguments -o sh.full alias.o arith_yacc.o arith_
yylex.o cd.o echo.o error.o eval.o exec.o expand.o histedit.o input.o jobs.o kill.o ma
il.o main.o memalloc.o miscbltin.o mystring.o options.o output.o parser.o printf.o red
ir.o show.o test.o trap.o var.o builtins.o nodes.o syntax.o -ledit
CWD /usr/obj/root/git/freebsd/bin/sh
TARGET sh.full
-- command output --

-- filemon acquired metadata --
filemon version 5
Target pid 63370
Start 1465173818.791066
V 5
E 66535 /bin/sh
R 66535 /etc/libmap.conf
R 66535 /usr/local/etc/libmap.d
R 66535 /var/run/ld-elf.so.hints

Meta file example

Improving the FreeBSD Build 27 BSDCan 2016

WITH_META_MODE
• Uses bmake’s meta mode with filemon(4)
• Captures dependencies missing from the build

•  csu
•  libcompiler_rt
•  tools

• Skips cleaning for make buildworld (essentially default –DNO_CLEAN)

• No .depend.target.o generated (mostly redundant)
•  Doesn’t invoke the OBJS_DEPEND_GUESS mechanism since it

also considers a .meta file to be present before adding the extra
dependency in

A working incremental buildworld

Improving the FreeBSD Build 28 BSDCan 2016

WITH_META_MODE
•  Uses more terse build output borrowed from

WITH_DIRDEPS_BUILD
•  Building /usr/obj/usr/src/lib/libclang_rt/ubsan_standalone/sanitizer_libignore.o
•  See /usr/obj/usr/src/lib/libclang_rt/ubsan_standalone/sanitizer_libignore.o.meta

for build command
•  Errors can show the .meta file used but disabled currently

bin/sh # make CFLAGS.exec.c=error exec.o
Building /usr/obj/root/git/freebsd/bin/sh/exec.o
cc: error: no such file or directory: 'error'
*** Error code 1

Stop.
make: stopped in /root/git/freebsd/bin/sh
.ERROR_TARGET='exec.o'
.ERROR_META_FILE='/usr/obj/root/git/freebsd/bin/sh/exec.o.meta'

New output

Improving the FreeBSD Build 29 BSDCan 2016

WITH_META_MODE
• Usually build targets are .PHONY meaning they produce

no file/cookie
• Can be used, along with a target cookie, to prevent a

target from running again if not needed
• A lot of opportunity to do this in make buildworld for

WORLDTMP staging for install targets
•  Not yet done, but the pattern is used for WITH_DIRDEPS_BUILD

• Normally a cookie on an install target is not safe…

Stop doing redundant things

Improving the FreeBSD Build 30 BSDCan 2016

WITH_META_MODE
Current code (safe, no meta)

do-install:
 install ${FILES} ${WORLDTMP}

Using a cookie (unsafe, no meta)

do-install:
 install ${FILES} ${WORLDTMP}
 touch do-install

Improving the FreeBSD Build 31 BSDCan 2016

WITH_META_MODE
Meta mode cookie

do-install:
 rm –f do-install
 install ${FILES} ${WORLDTMP}
 touch do-install

Simpler

META_TARGETS+= do-install
do-install:
 install ${FILES} ${WORLDTMP}

•  Meta mode / filemon will
detect if the command needs
to rerun

•  Must remove old cookie in
case further commands fail,
to try again later

Special case, if target defined after
bsd.sys.mk

META_TARGETS+= do-install
do-install: ${META_DEPS}
 install ${FILES} ${WORLDTMP}

Improving the FreeBSD Build 32 BSDCan 2016

WITH_META_MODE
•  Can be overly aggressive but generally still better than a build that

does make cleanobj and rebuilds everything
•  Initial CFT had some issues that are fixed now

•  make cleanworld no longer needed
•  make installworld no longer causes next build to rebuild everything
•  Significant performance improvements for realpath(3) handling

•  8 minute NOP build
•  Not compatible with WITH_SYSTEM_COMPILER yet

•  -target and –sysroot build command changes
•  More bmake performance improvements coming
•  Bug to fix with libraries relinking
•  Only for building 11+ but stable/10 will be able to use it as a build host

after MFCs
•  Use –dM flag to make to show why something is rebuilt

Final word

Improving the FreeBSD Build 33 BSDCan 2016

Miscellaneous
•  Build-time assertions for adding new libraries correctly
•  Various bitrot cleanup
•  bsd.progs.mk is now parallel safe and reliable

•  Interaction with FILES, SCRIPTS, TESTS, etc, was either skipping
targets or running multiple times

•  Error if installing a file to a missing directory
•  Such as installing foo.h into /usr/include/dest where dest does not

exist.
•  Simple fix (install with trailing /) but very impactful when forgetting to

run make distrib-dirs after pulling in an updated mtree file when
building/installing from a subdirectory

•  More CXX support (LIB_CXX, PROG_CXX)
•  bsd.compiler.mk compiler version caching to sub-makes

A lot of little things

Improving the FreeBSD Build 34 BSDCan 2016

Miscellaneous
•  (ACFLAGS|CFLAGS|CXXFLAGS).SRC

•  CFLAGS.file.c= -Wspecial-flag
•  Error if building during install-time (src only)

•  CFLAGS+= ERROR-tried-to-rebuild-during-make-install
•  Policy to support read-only object directories and avoid very obscure

installworld failures on various timestamp changes
•  make analyze (from NetBSD)

•  Runs the clang static analyzer for the directory
•  No kernel support yet, only userland and modules

•  WITHOUT_CROSS_COMPILER, WITHOUT_TOOLCHAIN both fixed
to work

•  External toolchain support simplified and expanded a bit
•  SUBDIR_PARALLEL expanded a lot (such as all of sys/modules)

Continued

Improving the FreeBSD Build 35 BSDCan 2016

PLANNED IMPROVEMENTS

Improving the FreeBSD Build 36 BSDCan 2016

Planned improvements
•  Build clang once for make universe if

WITH_SYSTEM_COMPILER is not satisfied and use it for all
architectures.

•  Add external clang xtoolchain packages as right now there are
only GCC packages

•  WITH_AUTO_OBJ
•  More build-time assertions
•  Cleanup

•  Cleaning up redundancy with Makefile.inc1 lib/dir__L targets
•  Cleaning up redundancy with bsd.incs.mk/bsd.files.mk/bsd.confs.mk
•  Cleaning up redundancy with _DP_* in src.libnames.mk

•  Handbook section on the build and Journal articles

Improving the FreeBSD Build 37 BSDCan 2016

Over/Under-linked library testing
•  Libraries should link in all of their own library dependencies and

nothing they don’t need
•  Isilon’s build checks for both of these cases
•  Overlink

•  tools/build/check-links.sh
•  Compares nm output to linked libraries nm output

•  Underlink
•  Linking libraries with -Wl,--no-undefined
•  Requires that all symbols used be resolved at linktime
•  Special cases which get a free pass

•  It does break the idea for “modules” that get their symbols from their loading
consumers

•  Does not work if a library has a cyclic dependency with another

Link only everything needed

Improving the FreeBSD Build 38 BSDCan 2016

WISHLIST

Improving the FreeBSD Build 39 BSDCan 2016

Cross builds
• Must build host tools to run during the build
• Cannot run target binaries in the build
• Need to ensure the target binaries are built with the

proper libc and knowing what functions the target
supports

Improving the FreeBSD Build BSDCan 2016 40

Review

Cross-OS builds
•  Building currently only supported from FreeBSD with MSR but there is demand for

Linux/OSX
•  Requires even more bootstrapping for early build tools such as mtree or ln (for

–h) in install.sh or install which are not part of an external toolchain
•  NetBSD supports this by a large compatibility library
•  Requires investment and maintenance into a much larger libegacy for

[Free]BSDisms
•  sys/cdefs.h from tree since so many headers use definitions from it, like _Thread_local for

xlocale.h for localedef
•  FreeBSD libc
•  strvis(3) …

•  The clang build requires C++11 support and falls back to GCC 4.2 if not available
which breaks assumptions in the build about amd64 using clang.

•  Meaning an external compiler will be needed unless we bootstrap to the point of supporting C+
+11 with multiple clang versions in-tree

We can do it

Improving the FreeBSD Build 41 BSDCan 2016

Ports cross-build
•  Isilon builds OneFS from FreeBSD where QEMU doesn’t

make sense since it is the same arch, just a different ABI
•  Need to run binaries during the build

• Currently our build is: buildworld -> ports ->
chroot(delayedworld)
•  Run OneFS binaries from FreeBSD using a kernel module for

syscall compatibility
•  We have reasons for not building from OneFS

Isilon’s need

Improving the FreeBSD Build 42 BSDCan 2016

Ports cross-build
•  Currently pkg.freebsd.org provides arm and mips packages that are built

from QEMU on amd64
•  Ports metadata provides dependencies for each phase:

•  FETCH, EXTRACT, PATCH, BUILD, RUN, LIB
•  Ports install to a staging directory before being packaged or installed to /

•  Some BUILD/RUN dependencies are actually used for staging and mislabeled
•  Ruby/Python ran to stage

•  Might need a STAGE_DEPENDS
•  Host

•  Must always build for host FETCH, EXTRACT, PATCH dependencies
•  Must guess and build BUILD, RUN dependencies as well

•  Target
•  For target only BUILD, LIB and RUN dependencies are needed

•  This means some ports will build the same thing twice (like clang in base)

Overview

Improving the FreeBSD Build 43 BSDCan 2016

Ports cross-build
• Need a unified build for Isilon
• Allows base build to depend on ports in a single

dependency graph
• Ports has no parallel build mechanism (requires

Poudriere)
• Using DIRDEPS for this with host and target staging vs.

using / for host
• Replaces the ports dependency framework with DIRDEPS

Doing it with DIRDEPS

Improving the FreeBSD Build 44 BSDCan 2016

Ports cross-build
•  Using a target/host staging directory not likely feasible

•  LOCALBASE vs HOSTBASE
•  LOCALBASE=/usr/local

•  where things are already installed
•  PREFIX=/usr/local

•  where things should be installed
•  HOSTBASE=/hoststage

•  Host tools to run for the build, with LD_LIBRARY_PATH set
•  PKG_BIN=LOCALBASE/sbin/pkg-static
•  Perl/Python/Ruby installation directories hardcoded

•  Likely needs more of a Poudriere-style build
•  Using DIRDEPS (or any parallel build) with ports is wonky with

make –j
•  Base A –j (fail), Port A (long run but fails at end), Base B –j (notices

failure immediately)

Problems with DIRDEPS approach

Improving the FreeBSD Build 45 BSDCan 2016

Ports cross-build
•  Autoconf builds require a config.site for the target system

•  --host=ARCH-OS (mips64-FreeBSD11.0)
•  Many tests run in the build to see if a function “works”
•  Tests that *run* during the build need ac_cv_functionworks overrides since

autoconf assumes it can run binaries it compiles and that binaries it runs match
the target

•  Perl requires a config.sh or crossperl or ssh to target
•  Python claims “only Linux” cross building
•  Easiest method of generating these is to do so on the target and store

the config.site in the tree
•  Some ports like devel/gettext build their own build tools that are ran in

the build
•  Requires building devel/gettext for host but also patch the target build to run

the binaries from the host version of the build
•  Not all build frameworks support cross-build

Case-by-case

Improving the FreeBSD Build 46 BSDCan 2016

Ports cross-build
•  Largely impractical
• Ports has no bootstrap mechanism
• Possible to get ports cross-built case-by-case but not all

24,000 of them
• QEMU and more powerful machines are more feasible

Final word

Improving the FreeBSD Build 47 BSDCan 2016

QUESTIONS?
•  WITH_FAST_DEPEND: https://svnweb.freebsd.org/changeset/base/290433
•  WITH_CCACHE_BUILD: https://svnweb.freebsd.org/changeset/base/290526
•  WITH_META_MODE: https://lists.freebsd.org/pipermail/freebsd-current/2016-May/061481.html
•  WITH_SYSTEM_COMPILER: https://lists.freebsd.org/pipermail/freebsd-current/2016-May/061376.html
•  DIRDEPS: http://www.crufty.net/sjg/blog/freebsd-meta-mode.htm

Improving the FreeBSD Build 48 BSDCan 2016

