
A Brief History
of the

BSD Fast Filesystem

Brought to you by

Dr. Marshall Kirk McKusick

BSDCan Conference
Ottawa, Canada
June 10, 2016

Copyright 2016 Marshall Kirk McKusick.
All Rights Reserved.

1

1979 − Early Filesystem Work

• Improved reliability

• staged modifications to critical
filesystem information

• modifications could be either
completed or repaired cleanly byfsck
after a crash

• Increased the block size of the filesystem
from 512 to 1K bytes

• doubled performance because each disk
transfer accessed twice as much data

• eliminated the need for indirect blocks
for many files

• still utilized only about 4% of disk
bandwidth

2

1982 − Birth of the Fast Filesystem

• Designed with a hybrid blocksize in which
large blocks could be broken up into as
many as eight fragments

• Large files used large blocks

• Small files could use as little as a single
fragment

• First deployed with default blocksize
4K/512

• Still in use today

3

1986 − Dropping Disk-geometry Calculations

• Originally a cylinder group comprised one
or more consecutive cylinders on a disk

• The filesystem could get an accurate view
of the disk geometry and could compute
the rotational location of every sector

• By 1986, disks were hiding this
information and it was too complex to
compute it

• All the rotational layout code was
deprecated in favor of laying out files
using numerically close block numbers
(sequential being viewed as optimal)

• Cylinder group structure was retained only
as a convenient way to manage logically-
close groups of blocks

4

1987 − Filesystem Stacking

• Allows filesystem modules to be stacked

• When a request is not implemented by a
layer it is passed down to the next lower
layer.

• Requests that reach the bottom of the stack
without being serviced return with
EOPNOTSUPP

• Requests may be modified and then passed
on to a lower layer

local admin exportsoutside admin exports

EOPNOTSUP

FFS
UFS

uid/gid mapping

NFS server

5

1988 − Raising the Blocksize

• Default blocksize raised to 8K/1K

• Small files use a minimum of two disk
sectors

• Nearly doubled throughput at a cost of
only 1.4% additional wasted disk space

6

1990 − Dynamic Block Reallocation

• With the advent of disk caches and tag
queueing it became desirable to begin
laying files out contiguously

• Size of file unknown when first opened

• If always assume big and place in
biggest available space, then soon have
only small areas of contiguous space
available

• If always assume small and place in
areas of fragmented space, then
beginning of large files will be poorly
laid out

7

Implementation of Dynamic Block Reallocation

• Dynamic block reallocation places file in
small areas of free space, then moves them
to larger areas of free space if file grows

• small files use the small chunks of free
space

• large files get laid out contiguously in
the large areas of free space

• Little increase in I/O load as the buffer
cache generally holds the file until its final
location is known

• Free space remains largely unfragmented
ev en after years of use (15% versus 40%
degredation after three years)

8

1996 − Soft Updates

• Speed up file and directory creation,
deletion, and renaming

• Keep filesystem consistent enough that
fsck need not be run after a system crash

• Ensure that unwritten data blocks never
show up in files

• Minimize need to do synchronous disk
writes

9

Keeping Metadata Consistent 1

• Synchronous writes

• Benefits: simple and effective

• Drawbacks: create/delete intensive
applications run slowly, slow recovery
after a crash

• Non-Volatile RAM

• Benefits: usually runs all operations at
memory speed, quick recovery after a
crash

• Drawbacks: expensive hardware
unavailable on many machines,
somewhat complex recovery

• Atomic Updates (journaling and logging)

• Benefits: create/remove do not slow
down under under heavy load, quick
recovery after a crash

• Drawbacks: extra I/O generated, little
speed-up for light loads

10

Keeping Metadata Consistent 2

• Copy-on-write Filesystem (LFS, ZFS,
WAFL, etc)

• Benefits: write throughput, cheap
snapshots, always consistent

• Drawbacks: disk fragmentation,
memory overhead

• Soft updates

• Benefits: most operations run at
memory speed, reduced system I/O,
instant recovery after a crash

• Drawbacks: complex code, background
fsck, and increased memory loading

11

1999 − Snapshots

• Create a read-only frozen-in-time copy of
a filesystem

• Minimize time that the filesystem is
unavailable while taking the snapshot

• Minimize amount of disk space overhead
to hold the snapshot

• Allow multiple snapshots to be
concurrently maintained

12

2001 − Raising the Blocksize, Again

• Default blocksize raised to 16K/2K

• Small files use a minimum of four disk
sectors

• Nearly doubled throughput at a cost of
only 2.9% additional wasted disk space

13

2002 − Background Fsck

• Disk state is always valid but behind in-
memory state

• Only inconsistencies:

• Blocks marked in use that are free

• Inodes marked in use that are free

• It is safe to run immediately after a crash
though eventually lost space must be
reclaimed

14

Background Block Recovery

• Block recovery on an active system:

1) Snapshotthe filesystem

2) Runstandard filesystem check
program on the snapshot

3) Adda system call to add lost blocks
and inodes to the filesystem map

15

2003 − Multi-terabyte support

• Original fast filesystem used 32-bit
pointers to reference a file’s blocks

• The 32-bit block pointers of the original
filesystem run out of space in the 1 to 4
terabyte range

• Considered other alternatives but chose to
extend the original filesystem

• Allowed reuse of most of existing code
base which allowed quick development
and deployment

• Became stable and reliable rapidly

• Same code base supported both 32-bit
block and 64-bit block filesystem
formats so bug fixes and feature or
performance enhancements usually
applied to both filesystem formats

16

2003 − Extended Attributes

• Extended attributes added at the same time
as multi-terabyte support

• Extended attributes are a piece of auxiliary
data storage associated with an inode that
can be used to store auxiliary data that is
separate from the contents of the file

• By integrating the extended attributes into
the inode itself,fsync() can provide the
same integrity guarantees as are made for
the contents of the file itself

17

2004 − Access-control Lists

• Extended attributes were first used to
support an access control list (ACL)

• specific list of the users and groups that
are permitted to access the file

• a list of the permissions that each user
or group is granted

18

Implementation of Access-control Lists

• Replaced an earlier implementation using
a single auxiliary file per filesystem
indexed by inode number which had two
problems:

• fixed size of the space per inode meant
only short user lists

• difficult to atomically commit changes
to the ACL

• Both problems fixed by using extended
attributes:

• extended attribute can be 64K, so long
list of users possible

• atomic update is easy since it can be
updated with one write of inode

19

2005 − Mandatory-access Controls

• Extended attributes next used for
mandatory access control (MAC)

• MAC framework permits dynamically
introduced system-security modules to
modify system security functionality

• MAC framework provides control over
kernel entry points affecting access
control and object creation

• When hit, MAC framework then calls
out to security modules to offer them
the opportunity to modify security
behavior

• Filesystem does not codify how the labels
are used or enforced; it just stores the
labels associated and produces them when
a security modules needs to do a
permission check

20

2006 − Symmetric Multi-processing

• In the late 1990’s, the FreeBSD Project
began the long hard task of converting
their kernel to support symmetric multi-
processing

• Start with giant lock around kernel

• Piece-by-piece add multi-threaded locking
and remove from giant lock

2004 − Vnode interface

2005 − Disk subsystem

2006 − Fast filesystem

21

2009 − Journaled Soft Updates

Only need to journal operations that
orphan resources

Journal needs only 16Mb independent of
filesystem size

Filesystem operations that require
journaling

• free operations in maps tracking blocks
and inodes

• Link count changes

• Unlink while referenced

22

2011 − Raising the Blocksize, Yet Again

• Default blocksize raised to 32K/4K

• Driven by the change of disk technology
to 4K sectors

• Small files once again use a minimum of
one disk sector

• Nearly doubled throughput with no
additional wasted disk space

23

2013 − Optimized Metadata Layout

Based on Ao Ma, etal. FAST ’13 ffsck paper

The first 4% of the data area of each cylinder
group is held for metadata

Directory contents placed in metadata area of
cylinder group holding its inode

First indirect block placed inline with data,
but all other indirect blocks placed in
metadata area of its inode’s cylinder group

Benefits:

• speeds file tree traversal

• speeds random access to file

• speeds sequential access because metadata
tends to be in disk track cache

• speeds fsck because less seeking needed to
get directories and file metadata

Metadata area is advisory

• if it runs out, metadata can go in data area

• if data area runs out, data can go in
metadata area

• handled on per cylinder group basis
24

Futur e Directions for UFS2

• Collapse trims to GEOM layer

• Enable snapshots when using jounalled
soft updates

• always

• don’t carry snapshots across crashes

• SMR drives

• split bitmap into fragmented and
contiguous areas to match zones

• stage soft-update completions to batch
cache flush

• Filesystem Hardening

• Turn unrecoverable write errors into
downgrade to read-only

• Turn panics into forcible unmount

25

Futur e Directions for UFS3

• 64-bit inodes

• 32-bit link count

• Dynamic block size

• Endian independence

26

Questions

mckusick@mckusick.com

http://www.mckusick.com

May the Source Be With You!

27

