
Capsicum and Casper
a fairy tale about solving security problems

BSDCan, Ottawa, 2016

Mariusz Zaborski

<m.zaborski@wheelsystems.com>
<oshogbo@FreeBSD.org>

Outline

1. Do we need sandbox?
2. seccomp(2)
3. pledge()
4. Capsicum
5. CloudABI
6. Casper

Do we need a sandbox?

cat(1)

Ambient authority

Threat Mitigation Techniques

● ASLR

● canneries

● NX bit

Do we need a sandbox?
Mateusz "j00ru" Jurczyk and Gynvael Coldwind in 2010 - 2014
using fuzzing techniques contributed to:

● 1120 bug fixes in ffmpeg

● 60 CVE in flash

● 568 unique crashes in Adobe Reader

seccomp(2)

seccomp(2)

● 2005
● Linux
● seccomp(2)

○ Former prctl(2) - PR_SET_SECCOMP
○ Very very former - /proc/self/seccomp

● SECCOMP_SET_STRICT
○ Allowed read(2), write(2), _exit(2), sigreturn(2)

● SECCOMP_SET_MODE_FILTER
○ Berkeley Packet Filter (BPF)

https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

seccomp(2)

libseccomp(3)

● seccomp_init()

● seccomp_rule_add()

● seccomp_load()

https://github.com/seccomp/libseccomp

seccomp(2)

● Chrome/Chromium
● OpenSSH
● Vsftpd
● LXD
● Firefox
● FirefoxOS
● Cjdns

pledge()

pledge()

● OpenBSD project
● formerly known as tame
● similar concept to seccomp
● dividing the program into two parts

○ the initialization stage and the main loop
● a simple interface

pledge(const char *promises, char *whitepath[]);

● whitepath - not yet implemented
● used in over 400 programs

pledge() - promises

● 25 promises, a few examples:
○ stdio - allows for the allocation of memory and performance of basic io

operations
○ rpath - allows for functions which can only cause read-only effects on

filesystems
○ wpath - allows systems call which may cause write-effects on

filesystems
○ cpath - allows for functions which may create new files
○ innet - allow for functions which operates in the AF_INET and AF_INET6
○ proc and exec - allows fork and to execute another program

pledge() - usage example in cat

pledge()

● bgpd
● dhclient
● dhcpd
● dvmrpd
● eigrpd
● file
● httpd
● Iked
● ldapdldpd

● mountd
● npppd
● ospfd, ospf6d
● pflogd
● radiusd
● relayd
● ripd
● scriptsmtpd
● syslogd

● tcpdump
● tmux
● xconsole
● xdm
● x server
● ypldap
● pkg_add

pledge() - issues

● execv turns off sandbox
every fourth program uses it

● hardcoded paths in kernel
○ open(2) files like /etc/localtime
○ readlink(2) /etc/malloc.conf

● One template ???
● Reload configuration ???

Capsicum

Capsicum

● tight sandboxing (cap_enter(2))

● capability rights (cap_rights_limit(2))

Capsicum

80 capability rights, a few examples

● CAP_FCHMOD
● CAP_READ
● CAP_UNLINKAT
● CAP_APPEND
● CAP_WRITE

Capsicum

Two ways to obtain more capabilities:

● the initialization phase

● delegation

Capsicum - uniq(2)

Capsicum - uniq(2)

Capsicum - delegation template

Capsicum

● dhclient(8)
● hastd(8), hastctl(8)
● rwhod(8), rwho(1)
● tcpdump(8)
● kdump(1)
● ping(8)

● uniq(1)
● auditdistd(8)
● sshd(8)
● pkg(8)
● chromium

Capsicum - issues

● high barriers to entry

● libc is not your friend

● libraries are not your friend as well

● magic calls

It is all about reducing TCB

CloudABI

CloudABI
● Designed to use in cloud

● Use Capsicum

● Portable ELF files

● Special runtime environment

CloudABI

● YAML file allows to:

● socket
○ bind: 0.0.0.0:12345
○ bind: /unix/domain/socket

● fd
○ stdout
○ stderr

● file
○ path [filename]

CloudABI

● Cloudlibc

○ removes function consider insecure like gets(3) or strcpy(3)

○ only capsicum friendly functions

■ removes open(2), stat(2), wait(2), etc.

■ allows pdfork(2), openat(2), etc.

● compilation checks, not runtime checks

Casper

Casper

Provides functionalities which are not available in capability mode

through convenient APIs making Capsicum more practical.

Casper - daemon approach

● casperd(8)

● libnv as IPC

● services

● /etc/casper - list of services

● libcapsicum - IPC library

● libcasper - services library

Casper - daemon approach

Casper - daemon approach

Casper - daemon approach

Casper - daemon approach

Casper - daemon approach

Casper - daemon approach

Casper - issues
Service workers are children of the Casper daemon

● different credentials

● different resource limits

● different working directory

● different umask

● different MAC labels

Casper - issues

● different cpu set

● different process group and tty

● different /dev/std{in,out,err} and /dev/fd/*

$ diff -du <(cat a) <(cat b)

--- /dev/fd/11

+++ /dev/fd/13

Casper - issues

● different routing table (setfib(1))

● harder to audit/ktrace

● one point of failure

Casper - solution?
● Create new syscall to copy all settings of a process

● Allow to copy them over Unix Domain

● Available only by root

● What with descriptors?

Process descriptors

● pdfork(2)

● Capsicum friendly

● Can be monitored by kqueue(2), select(2) or poll(2)

● Still waiting for pdwait(2)

● wait(2) called with -1 ignores process descriptors

● close(2) will terminate child

Casper - the new architecture

service workers are children of the actual process

● pdfork(2)

● Reduce the number of modules

○ libcasper

○ services

● Dynamic linking

● API did not changed

Casper - problems and limitations

● changing capabilities, credentials etc.

● unable to globally shutdown Casper

Casper - fork approach

Casper - fork approach

Casper - fork approach

Casper - fork approach

Casper - fork approach

Casper - fork approach

Casper services

● system.dns

● system.grp

● system.pwd

● system.random

● system.sysctl

Casper usage - 1/2

Casper usage - 2/2

libcaspermock

● same API like Casper

● reduce need of doing checks in code

Future goals

● lower the bar for the new Casper and Capsicum consumers

● publish the system.filesystems or similar services which allow

to interact with path namespace

● Improve auditing

Thank you!

<m.zaborski@wheelsystems.com>
<oshogbo@FreeBSD.org>

