
Using VXLAN
… to network virtual machines, jails, and other fun things on
FreeBSD

John Nielsen, john@jnielsen.net
BSDCan, 6/10/2016

Overview
Introduction

VXLAN Compared to VLAN and Network Tunnels

VXLAN More in Depth

Tips and Tricks

A Few Use Cases

Demos!

Introduction

About Me

VXLAN in Brief

Quick Review of Network Protocol Layers

Anatomy of a VXLAN Packet

About Me
First Computer: TI-99/4A (circa 1983)

FreeBSD user since 1999 (FreeBSD 3.4)

BS CS from BYU in 2005, MS CS from UNC Charlotte in 2009

Systems Administrator/Engineer since 2000

Currently employed at Domo

Especially interested in virtualization, host-side networking and storage

VXLAN in Brief
VXLAN stands for Virtual eXtensible Local Area Network

Creates overlay networks by encapsulating Ethernet frames in UDP/IP with an associated
24-bit Virtual Network Identifier (VNI)

"Virtual" tunnels are created in a one-to-many fashion between end hosts

Hosts are called "Virtual Tunnel End Points" or VTEPs.

VTEPs learn about each other as they exchange traffic

Broadcast, Unknown destination and Multicast (a.k.a BUM) traffic is sent to all
participating VTEPs via multicast

Quick Review of IP Protocol Layers

“Application” (OSI 5-7): HTTP,
SSH, SMTP, … (data payload)

“Transport” (OSI 4): TCP, UDP,
SCTP, …

“Network” (OSI 3): IPv4, IPv6, …

“Data Link” (OSI 2): Ethernet,
InfiniBand, …

Anatomy of a
VXLAN Packet

The original (“inner”) Ethernet
frame is prepended with a VXLAN
header

Together they form the data
payload of a new (“outer”)
encapsulating packet with its own
UDP and IP headers

VX
LA

N

H
ea

de
r

VXLAN Compared to VLAN and
Network Tunnels

VLAN

Properties

Limitations

Network Tunnels

Tunnel Types and Properties

Limitations

VXLAN Benefits and Limitations

VLAN Properties

Virtual Local Area Network

Layer 2 multiplexing enhancement allowing up to 4094 "virtual" Layer 2
networks on a single set of connected switches

Typically requires switch support and configuration

Generally well-understood and well-supported

VLAN Limitations

The underlying network must be Ethernet

Further, the whole network has to be a single Layer 2 segment (i.e. VLANs
don't cross routers)

At most 4094 VLANs per segment (12-bit ID minus 2 reserved values)

Some switches impose their own (lower) limits on number of VLANs

Network Tunnels Overview

Point-to-point (1-to-1) connections between two end points

Typically encapsulate Ethernet (L2) or IP (L3) traffic within IP or TCP/UDP

L2TP, GRE, PPP, GIF, EtherIP, various VPNs, etc

Great for links between two hosts (like a static VPN)

Good for multiple links in a star topology (like a multi-user VPN where the
users just want to talk to the office, not each other)

Tunnel Limitations
They don't scale well, especially when direct communication between multiple end points is desired (full
mesh topology)

For N hosts, the number of tunnels needed is

In other words, the number of tunnels grows exponentially with the number of endpoints

2 endpoints: 1 tunnel. 3 endpoints: 3 tunnels. 4 endpoints: 6 tunnels. 10 endpoints: 45 tunnels. 100
endpoints: 4950 tunnels, etc

Typically only one "inner" network is carried over each tunnel

Each tunnel needs to be configured on both ends

A routing protocol or something similar is required to decide which tunnel to use for which traffic

VXLAN Benefits
One-to-many "virtual" tunnels only need to be configured once per host, even if more hosts
will be added in the future

Each VTEP automatically creates and maintains its own forwarding table, so most
communication happens directly with the correct peer VTEP automatically

No switch support required

In fact, the underlying networks don't even have to be Ethernet. InfiniBand, wireless, PPP,
ATM or any combination can work

24-bit VNIs with no reserved values allow for 16,777,216 independent VXLAN networks per
multicast domain

VXLAN Limitations
Each network segment (and the routers between them, if more than one) needs to support multicast.

For a single organization this isn't usually too hard

Some implementations can use out-of-band discovery instead of multicast

Encapsulation adds 50 bytes to each packet

(This is also true of most 1-to-1 tunnels)

Need either a larger MTU on the outer network(s) or a smaller MTU on the inner networks

My suggestion: use decent networking gear. If you can set an MTU of 9216 on the outer network(s), the
end user can choose an MTU of either 1500 (normal) or 9000 (“jumbo”) for each inner network

Some CPU overhead (at least until VXLAN-offloading NICs and drivers are more common)

VXLAN More in Depth

How Does It Work?

Sending VXLAN packets

Receiving VXLAN packets

Where Is It Available?

How Does VXLAN Work?
On each host, a virtual interface is created for each VXLAN network to be
used on that host

The interface has a name, VNI, and multicast address

The interfaces can be used directly (by e.g. assigning IP addresses to them) or
bridged together with other real or virtual Ethernet interfaces

The host maintains a forwarding table for each interface, mapping (inner) MAC
addresses to (outer) remote VTEP IP addresses. Much like in a switch, the
forwarding table is updated by snooping traffic to and from the vxlan interface.

How Does VXLAN Work? (Cont)
Packets sent over the (outer) transport network have a VXLAN header
prepended and are then encapsulated with outer IP and UDP headers

Sending VXLAN packets
To send a packet "out" the vxlan interface, its destination MAC address is looked up in
the forwarding table.

If a match is found then the packet is encapsulated and sent to the remote VTEP
directly (unicast)

If no match is found (or if the (inner) destination is broadcast or multicast), the packet
is encapsulated and sent to the multicast address configured for the interface

Receiving VXLAN Packets
To receive a packet "in" the vxlan interface, the encapsulated packet is first
received by the outer network interface and matched to a vxlan interface by
the VNI in the VXLAN header. The (inner) source MAC address and (outer)
source IP address are used to update the forwarding table for the interface.

The packet is then un-encapsulated and the original (inner) L2 frame is
sent out the appropriate vxlan interface

Where Is It Available?
OpenBSD since 5.5

FreeBSD since 10.2

Linux kernel since 3.7 (wth corresponding iproute[2])

Kernel 3.10 or newer recommended

VMware ESX since 5.1(?)

Some switches and routers from Cisco, Arista, Juniper and others

Docker’s “overlay” network driver uses a userspace VXLAN implementation for inter-host
communication

Tips and Tricks

Use a Unique Multicast Address for Each VNI

Use the Official UDP Port (4789)

Remember to Adjust the Firewall on your VTEPs

Use a Unique Multicast Address for
Each VNI

The entire IPv4 multicast range is 224.0.0.0 - 239.255.255.255

The upper end of the range, 239.0.0.0 - 239.255.255.255, is classified by the IANA
as "organization-local scope"

In other words, 239.0.0.0/8 is 24 bits and is likely available for your VXLANs

Take the VNI, convert it to hex, convert each octet back to decimal and stick 239 in
front. That's your one-to-one mapping from VNI to multicast.

Example: VNI: 12345678, or in hex: 0xbc614e. 0xbc=188, 0x61=97, 0x4e=78.
Multicast address = 239.188.97.78

vni_to_mcast.sh

#!/bin/sh

hex=`printf "%06x" ${1}`
printf "239"
for pos in 1-2 3-4 5-6; do
 printf ".%d" "0x`echo "${hex}" | cut -c ${pos}`"
done
printf "\n"

Use the Official UDP Port (4789)

The IANA-assigned UDP port number for VXLAN is 4789

The Linux implementation predates the IANA assignment and has its own
default UDP port of 8472

Unless you need to be compatible with other hosts using the Linux port
number, use the official one.

FreeBSD and OpenBSD use the official port by default. On Linux, add
"dstport 4789" to your "ip link create" command

Remember to Adjust the Firewall on
your VTEPs

And Don’t forget multicast! For the outer network:

allow UDP from {other hosts} to {me} port 4789

allow UDP from {other hosts} to 239.0.0.0/8 port 4789

For the inner network:

whatever rules you'd normally apply to an interface

A Few Use Cases

Virtual Networks for Bhyve (or other) VMs

Bridging / Extending Ethernet Networks Across Non-Ethernet Segments

Networking Between VNET Jails

Virtual Networks for Bhyve VMs

Millions of isolated virtual networks on one (set of) outer network(s)

Hosts can be on different IP subnets

No switch configuration needed to add or remove networks

Virtual interfaces can be bridged with vxlan interfaces as needed

Each VTEP (host) only gets traffic for the VNIs it actually has VMs on

Bridging / Extending Ethernets

Interfaces have to be Ethernet-like in order to be added to an Ethernet
bridge

But other Layer 2 technologies are cool too! Like InfiniBand

Wireless access points can be bridged easily, but wireless stations cannot

But they all support IP and multicast! VXLAN makes it easy to create as
many Ethernet-like overlay networks as you need on any IP network

Networking Between VNET Jails
VNET jails on FreeBSD have their own network stacks isolated from the
host’s

Similar to the VM case, the host side of an epair interface can be added to
a bridge while the other side is enslaved into a jail

Alternatively, if the jail is the only client on the host for a given network, the
vxlan interface can be enslaved directly into the jail (while the host still
manages the outer network)

The jail can communicate with other jails (or VMs, etc) on the same VXLAN

Demos and How-Tos
Setup Example (FreeBSD)

Startup Config (FreeBSD)

Setup Example (OpenBSD)

Startup Config (FreeBSD)

Setup Example (Linux)

Jail Networking Demo

Setup Example (FreeBSD)
ifconfig vxlan1234 create vxlanid 1234 vxlanlocal 192.168.2.1
vxlandev vtnet0 vxlangroup 239.0.4.210
ifconfig vxlan1234 inet 192.168.248.1/24 up mtu 1450
ifconfig vxlan1234
vxlan1234: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST>
metric 0 mtu 1450
 ether ca:70:0e:dd:c0:78
 inet 192.168.248.3 netmask 0xffffff00 broadcast 192.168.248.255
 nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>
 vxlan vni 1234 local 192.168.2.1:4789 group 239.0.4.210:4789

Startup Config (FreeBSD)

/etc/rc.conf
cloned_interfaces="vxlan1234" # or add to existing
create_args_vxlan1234="vxlanid 1234 \
 vxlanlocal 192.168.2.1 \
 vxlandev vtnet0 \
 vxlangroup 239.0.4.210"
ifconfig_vxlan1234="inet 192.168.248.3/24 up mtu 1450"

Setup Example (OpenBSD)
ifconfig vxlan1234 tunnel 192.168.1.100 239.0.4.210 vnetid 1234
ifconfig vxlan1234 192.168.248.2/24 mtu 1450
ifconfig vxlan1234
vxlan1234: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1450
 lladdr fe:e1:0e:dd:c0:78
 priority: 0
 groups: vxlan
 media: Ethernet autoselect
 status: active
 tunnel: inet 192.168.100.24 -> 239.0.4.210 vnetid 1234
 int 192.168.248.2 netmask 0xffffff00 broadcast 192.168.248.255

Startup Config (OpenBSD)

/etc/hostname.vxlan1234
tunnel 192.168.1.100 239.0.4.210 vnetid 1234
inet 192.168.248.2 255.255.255.0 NONE mtg 1450

Setup Example (Linux)
ip link add vx1234 type vxlan id 1234 group 239.0.4.210 dev eth0 ttl
64 dstport 4789
ip addr add 192.168.248.3/24 dev vx1234
ip link set up mtg 1450 dev vx1234
ip a show dev vx1234
5: vx1234: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue
state UNKNOWN
 link/ether 7e:a3:ea:f3:5a:49 brd ff:ff:ff:ff:ff:ff
 inet 192.168.248.3/24 scope global vx1234
 valid_lft forever preferred_lft forever
 inet6 fe80::7ca3:eaff:fef3:5a49/64 scope link
 valid_lft forever preferred_lft forever

Jail and VM Network Demo

Questions?

Slides will be posted soon

Thank you!

