
FreeBSD on Cavium ThunderX System on a Chip

Zbigniew Bodek, Wojciech Macek
Semihalf,

zbb@{semihalf.com, freebsd.org}, wma@semihalf.com

Abstract

This paper describes the FreeBSD oper-
ating system port for the Cavium ThunderX
CN88XX System on a Chip. ThunderX is a
newly introduced, ARM64 (ARMv8) SoC de-
signed for the high performance and server mar-
kets. It is currently the only one in the ARM
world to incorporate up to 96 CPU cores in
the system along with the whole technology
to make it possible. ThunderX is up to date
with the latest trends in the computer archi-
tecture industry, including those that are rel-
atively new to FreeBSD like SR-IOV (Single
Root I/O Virtualization) or completely unique,
such as ARM GICv3 and ITS).

The main focus of this article is to provide
a bottom-up overview of how the FreeBSD plat-
form support for ThunderX was implemented
and what are the benefits and pitfalls of the
newly introduced ARMv8 technology in terms
of the OS development. The paper also de-
scribes the key components of the ThunderX
system and explains, how they were supported
in FreeBSD. Finally, possible fields of further
improvements are pointed out briefly.

1 Introduction

FreeBSD is undoubtedly the most recog-
nizable Unix-like operating system available.
One of the main areas of its deployment is
server market, which is still dominated by the
Intel and AMD-based computers. However, re-
cently the highly successful in the mobile in-
dustry ARM architecture is gaining more inter-
est as a foundation for high performance server
SoCs. A turning point in that field was the

emergence of a 64 bit ARM implementation
(ARMv8) including improved technology to ob-
tain insane multi-core capabilities. Thus it is
substantial for the FreeBSD community (devel-
opers and users) to keep up with the growing
interest in ARM-based servers and supply the
ecosystem with the ARM64 BSD OS, that will
be on par with the available Tier-1 x86 plat-
forms.

The motivation behind the work on Thun-
derX was driven by the actual market need for
the FreeBSD OS on that platform, the aim of
which is to become a real alternative for the
energy-intensive solutions. ThunderX is also
the only ARM-based chip in the world to scale
up to 48 CPU cores per socket with the possi-
ble dual socket configuration (up to 96 CPUs).
With the included hardware accelerators for
networking, storage and security, as well as
powerful peripheral devices, ThunderX is a per-
fect ground for the server-oriented OS such as
FreeBSD and a great engineering challenge to
face for a kernel developer.

The introduced support is based on the
foundational work with the emulation as a pri-
mary target (ARM Foundation Model). Hence
the platform support for ThunderX was partly
carried out in parallel to the FreeBSD base sys-
tem development and occasionally was inter-
twining with it. ThunderX was also the first
hardware platform to switch from the ARM
emulator.

The result is a fully functional, though
still experimental OS, that supports key chip
features such as:

• PCI Express



• GICv3 + ITS

• SMP (single and dual socket)

• SATA

• Virtualized Network Interfaces

The description of the general FreeBSD kernel
implementation for ARMv8 architecture is be-
yond the scope of this paper and is discussed
only in respect to the work on ThunderX sup-
port.

2 Hardware overview

Contemporary ARM-based chips very
much follow the current trends in the com-
puter industry incorporating multiprocessor
capabilities, high performance peripheral de-
vices, buses and extensions, as well as var-
ious hardware accelerators and virtualization
technologies. The 8th architecture revision
(ARMv8) moved those concepts to a new level
by overcoming previous, architectural limita-
tions. ThunderX is a good representative of
the new ARM chips generation as it is the first
to utilize majority of the newly introduced fea-
tures.

2.1 Core complex and CCPI

The heart of the CN88XX SoC is a set of
Cavium proprietary ARMv8-compliant CPUs.
Each CPU has its own I-cache and D-cache
but they share a common, 16MB L2 cache.
Single package can contain up to 48 CPUs
but the complex can be connected to an-
other CN88XX processor using Cavium Coher-
ent Processor Interconnect fabric (CCPI). All
CPUs in the system are cache coherent in re-
spect to L1, L2 cache and DMA accesses. The
system coherency capabilities are also extended
across CCPI connected entities. Therefore, the
dual socket configuration gives a fully coherent
system containing 96 ThunderX CPUs.

3 System bootstrap

Typical CN88XX boot scenario starts
with the on-chip Boot ROM. This stage is sup-
posed to load a Boot-level 1 Firmware (BL1)
from the SPI connected FLASH which will then
load further BL2 and BL3 Firmware and fi-
nally, the control over the system is passed to
the Cavium Unified Extensible Firmware Inter-
face (UEFI) bootloader. At that point Thun-
derX system and its interfaces are initialized
and boot CPU core is in EL2 exception level
(Hypervisor). In order to run FreeBSD, Thun-
derX needs to load the kernel ELF file and sup-
ply it with a machine description such as the
DTB (Device Tree Blob), available memory re-
gions, as well as the information about the ker-
nel location in DRAM, etc. Hence the next step
in the FreeBSD boot process is the native BSD
loader(8) which in that case is being executed
in UEFI runtime environment. loader(8) han-
dles kernel acquisition and jumps into its code.
ThunderX uses genuine ARM64 loader(8) so al-
most no modifications needed to be made.

4 Early system initialization

The very first kernel code being executed
is the one in locore.S. It performs two funda-
mental actions:

• Puts CPU into a well defined state

• Prepares the execution environment for
the C code

The start software usually drops the exception
level to EL1 (after performing EL2 specific con-
figuration), creates initial kernel mappings that
are required to change the context to the kernel
virtual address space, enables Memory Man-
agement Unit and jumps to the early machine
initialization in C code. ThunderX requires
some more settings during that stage than the
ARM Foundation Model. This includes:

• Enabling EL1 access to the Generic Inter-
rupt Controller’s CPU Interface

2



By default CPU interface cannot be ac-
cessed through System Registers from
EL1. Access permission has to be granted
while still in EL2.

• Enlargement of the Virtual address space
in TCR_EL1
On ThunderX, the physical memory is
mapped beyond 512GB. Therefore, if the
programmed address space is not big
enough, it is impossible to create an iden-
tity mapping required to jump from Phys-
ical to the Virtual address space.

The changes however are not strictly
ThunderX-specific and will apply to any
platform with the similar requirements.

5 Interrupts delivery

Exceptions, whose purpose is to indicate
to CPU that certain action took place, are
called interrupts. There would be no reason-
able multithreading OS without interrupts sup-
port therefore they are one of the most funda-
mental elements of the system. Previous gen-
eration of ARM processors often used to incor-
porate so called ARM Generic Interrupt Con-
troller (GIC) or other proprietary implementa-
tion.

Exemplary ARM GIC consists of two
main components: Distributor and CPU Inter-
faces. Typically, interrupt lines from the on-
chip devices are wired to the Distributor inter-
face which then, according to its configuration,
routes the interrupt signals to the appropriate
CPU interfaces. If the interrupt signalling is
enabled, the CPU will receive a notification on
the appropriate interrupt line (IRQ or FIQ).
Finally, the CPU can acquire the interrupt in-
formation such as its number from the CPU
Interface registers and change pending state
of the interrupt. This architecture works fine
for ARMv6/v7 processors but has some serious
limitations in terms of:

• Scalability
Can route interrupts to up to 8 CPU cores

• Maximum number of interrupts
Each interrupt requires physical connec-
tion to the Distributor

• No Message Signalled Interrupts support
Cannot use in-band PCI interrupt sig-
nalling

• Slow access to the CPU Interface registers
Each interrupt requires at least few
read/write sequences to the memory
mapped registers (slow access to device
memory and possible TLB misses).

5.1 Generic Interrupt Controller v3

Platforms such as ThunderX require im-
proved interrupts handling to provide better
SMP utilization, support for PCIe devices and
minimal time penalty per interrupt. These fea-
tures were introduced with ARM Generic In-
terrupt Controller v3 in cooperation with In-
terrupt Translation Service. The contributed
work includes full FreeBSD support for ARM
GICv3 and ITS along with the ThunderX spe-
cific quirks but excluding virtualization exten-
sions.
This paper describes the support for the crucial
GIC components only and does not cover the
implementation of the machine dependent part
of the interrupts handling code that needed to
be redesigned for the purpose of this port.

5.1.1 Affinity-based routing

Unlike earlier GIC architectures, GICv3
incorporates additional, third component in
form of Re-Distributors that are memory
mapped entities, associated with every CPU in
the system. However, CPU Interface can be op-
tionally accessed through CPU’s System Reg-
isters to speed up interrupts handling after the
core gets the notification. To overcome the in-
terrupt to CPU delivery limitations, the inter-
rupt is now routed based on the Affinity Hierar-
chy. This means that the interrupt destination
is now addressed by the 4-level CPU affinity
number in the system. The GICv3 driver con-
figures all SPIs (Shared Peripheral Interrupts)

3



in the global Distributor but PPIs (Private
Peripheral Interrupts), SGIs (Software Gener-
ated Interrupts) and a new class of LPIs (Lo-
cal Peripheral Interrupts) are managed through
per-CPU Re-Distributors. Each Re-Distributor
needs to be enabled or woken up before it can
be used. Fortunately GICv3 provides an auto-
configuration scheme that allows the OS driver
to iterate through device’s memory mapped re-
gion, match configurator CPU to a correct Re-
Distributor (based on the affinity) and perform
appropriate actions. Once configured the Re-
Distributor interface can be used in a similar
manner to the global Distributor.

Inter Processor Interrupts (IPI) can be
also delivered based on the CPU Affinity Hier-
archy. Because FreeBSD kernel does not enu-
merate CPUs in SMP according to their hard-
ware affinity it is required to save and match
each CPU address with the requested CPU
group on every IPI. Software Generated Inter-
rupts (triggered by the write to the CPU Inter-
face register) are used to perform IPI exchange.

5.2 ITS and Message Signalled Inter-
rupts

In a typical scenario the peripheral de-
vice requests an interrupt in the Distributor
which then forwards it to the appropriate Re-
Distributor. Finally the interrupt is signalled to
the CPU Interface. The alternative behavior,
for which Re-Distributors are used in GICv3, is
interrupt routing that bypass the Distributor.
This is used by MSIs and requires ITS assist.

Interrupt Translation Service is a GICv3
extension that routes LPIs generated by any
device that can send Message Signalled Inter-
rupts. ITS works closely with PCIe bus and
IOMMU because unique device IDs used in the
interrupt translation process are passed within
the bus transaction itself. ITS is supported
in the FreeBSD by a separate driver. The
controller requires some portion of the system
memory to operate and this needs to be pro-
vided by the OS. Variety of possible ITS imple-
mentations imply the existence of the autode-
tection features that need to be revised when

configuring the device. The absolute basic con-
figuration requires:

• Memory for ITS Private Tables
Translation Tables used by the hardware
to match the device’s interrupt request
with the invariant interrupt number.

• Memory for the Command Queue
ITS is programmed via this command
queue. OS software must set the queue
write pointer (GITS_CWRITER) to the
start of the queue.

• Memory for the LPI Configuration and
Pending Tables
LPIs pending status is visible through
the bitmap in the Pending Tables.
Particular LPI can be configured (i.e.
masked/unmasked) using array of bytes in
the Configuration Table.

Interrupt mappings are created per-
device and per-CPU collection (group of
CPUs). The implementation defined device
identifiers are usually based on the PCIe
Bus:Device:Function address. For ThunderX
this ID is more complicated due to possi-
ble multi-node configuration and requires ad-
ditional Node:ECAM.number address. Device
IDs differ for the internal and external PCIe
units and this needs to be taken into consid-
eration by the ITS code. CPUs on the other
hand are matched based on their CPU affinity
or Re-Distributor Physical Address.

In order to create a LPI interrupt route
the software has to:

1. Reserve an LPI from the LPIs bitmap and
enable it

2. Acquire the CPU collection identifier

3. Acquire the Device ID

4. Select an interrupt number to map

5. Send MAPVI command to ITS and wait
for its completion

4



The unique approach presented by the
ITS controller is that all MSI-capable devices
can use a single memory location to gener-
ate an interrupt. Any interrupt ID written to
the GITS_TRANSLATER register, that has a valid
translation for the interrupting device, will re-
sult in LPI assertion.

6 SMP

The standard ARMv7-MP specification
limits the number of supported CPU cores
to 8. Each 4 cores are logically connected
to create a cluster. Then, up to two clus-
ters can be combined together using Core-
Link interface providing fully coherent 8 CPU
core system. Some vendors’ implementations
of ARMv7 cores can provide up to 16 clus-
ter scalability, which seemed to be theoreti-
cal limit for the architecture. The ARMv8 is
a huge step forward. The interconnects now
are able to address each CPU by its logical lo-
cation using four-level CPU Affinity Address
(Aff3:Aff2:Aff1:Aff0), that allows a significant
growth in total core number.

6.1 SMP bring-up

ThunderX CPU cores are managed
through a standard ARM Power State Coordi-
nation Interface (PSCI). The relevant code was
already in the FreeBSD sources and was used
as is. The main part of supporting SMP op-
eration on ThunderX was focused on resolving
problems in areas such as:

• System and TLB cache management

• IPI and interrupts handling

• Context switching

• Memory ordering

• Operations atomicity

For example, system maintains cache coherence
between CPU cores but only within their share-
ability domain. If the common memory map-
pings are not marked as shareable in that do-
main, data copies seen by the CPUs may differ.

Similar results can be observed when one CPU
modifies shared Translation Table entries and
appropriate TLB maintenance operation is not
issued and propagated to the secondary cores.
In that case CPUs can potentially see different
physical frames, with different access permis-
sions at the same Virtual Addresses.

6.2 CCPI and dual socket operation

The ThunderX chips provides ever more
sophisticated scalability. Based on Cavium Co-
herent Processor Interconnect (CCPI), two pro-
cessors can be lashed together creating a shared
memory space. The typical two-socket config-
uration supports 96 cores and up to 1 TB of
system memory. From the operating system
perspective, the complete machine looks like it
has two separate NUMA (Non-Uniform Mem-
ory Access) nodes each made of 48 CPUs and
half of the memory. The I/O interfaces (eg.
PCIe, SATA) are accessible by both nodes, but
it is strongly suggested that all I/O accesses
are done by the socket owning the correspond-
ing interface. In that scenario, the whole sys-
tem performance and peripherals are doubled.
The dual socket machine offers twice as much of
PCIe links, Ethernet interfaces, etc. and the in-
terrupts are distributed among all CPUs using
two separate ITS units. For even bigger work-
loads, the two-socket Cavium systems can be
connected together using a low-latency Ether-
net fabric. This allows for hundreds of gigabits
per second of aggregated network bandwidth.

7 PCIe

Cavium ThunderX machine provides
standardized interface which all peripherals are
attached to. The only I/O the CPU provides
is a modern PCIe 3.0 bus. All other devices
(SATA, Ethernet NICs, etc.) are typical PCIe
endpoints which can be easily detected by the
operating system and do not require any ma-
chine specific resource management code ex-
cept single PCIe controller driver. ThunderX
provides two distinct PCIe interface types: in-
ternal and external. The internal one is re-

5



duced version of generic PCIe standard provid-
ing PCI-like logical access to all peripherals in-
side ThunderX SoC. The external one, on the
other hand, is a fully compatible PCIe 3.0 link
allowing easy connection of generic PCIe cards
of the size up to x8 lanes.

The ThunderX driver is divided into three
parts: generic PCIe hardware accessors, FDT-
configured internal PCIe controller and, fi-
nally, internal PCIe device representing exter-
nal PCIe controller. FreeBSD PCI subsystem
takes care of almost every aspect of PCI op-
eration, except of some very hardware depen-
dent low-level functionalities. In order to ful-
fill these requirements, driver needs to provide
three things: access to devices configuration
space, resource (bus addresses) allocations and
interrupt mapping. On CN88XX platform, any
access to internal configuration space is done
using generic mechanism called ECAM (i.e. all
configuration headers of devices are mapped
into host memory space; each memory access
to that location makes the controller to au-
tomagically generate all PCIe requests for the
user). External PCIe configuration space is ac-
cessed using indirect addressing supported by
external controller. Second functionality which
driver needs to provide is resource assignment.
Fortunately, the Cavium UEFI configures all
PCIe tree and fills every BAR with appropri-
ate values. The only thing the driver needs to
do is to read those (bus) addresses, mark as
used in the Resource Manager (rman(9)) and
return a result. If some driver is not initial-
ized (this happens for example for NIC’s Vir-
tual Functions) then the controller manually al-
locates necessary bus space and properly con-
figures the BAR. The last thing the driver pro-
vides is interrupt mapping. Currently, the only
supported interrupt types are MSI or MSI-X,
which require some quirks in ITS as well.

Advanced architecture of ThunderX offers
a huge amount of internal PCIe devices (more
than 200 endpoints). To avoid creating enor-
mous PCIe device trees, these devices are sep-
arated into 3 different zones, each is governed
by a separate internal PCIe controller. It is
also worth noticing that the external PCIe con-

troller is the PCIe device hanging on internal
PCIe bus. Although not intuitive, this solu-
tion provides an easy way to support various
hardware versions of the device. Let’s imag-
ine one ThunderX chip has only onw external
PCIe available, where another might have tree
of them. Using conventional approach, each
version of the hardware would require different
machine description (i.e. DTB) file to make
all the controllers get detected and configured
properly. But when the external controller is
an internal PCIe device, the number of them is
gathered on-the-fly using standard PCIe enu-
meration technique.

8 VNIC

CN88XX chip has powerful Ethernet ca-
pabilities that include 40 Gbps, 20/10 Gbps
and 1 Gbps interfaces. ThunderX introduces
a flexible and highly programmable design of
the network subsystem that allows for efficient
hardware resources virtualization and node-
to-node connectivity without using external
switches. The main objective of the presented
work was to provide a basic networking support
for all type of available interfaces.

The networking subsystem in ThunderX
is partitioned into few, core components:

• BGX - Common Ethernet Interface

• NIC - Network Interface Controller

• TNS - Traffic Network Switch

which in turn implement: MAC layer,
Network Interface layer and hardware switch-
ing between the mentioned components and
other CN88XX devices. Moreover, NIC is a
SR-IOV capable device that can incorporate up
to 128 Virtual Functions, each providing full
network interface features. ThunderX contains
two BGX instances that are connected to NIC
and its VFs via TNS unit.

The described FreeBSD implementation
of the ThunderX networking drivers does not

6



include support for TNS and its features. TNS
Bypass logic is used instead, that results in
direct connection of BGX units to the corre-
sponding NIC TNS interfaces as well as freedom
of Rx/Tx queues assignment to Logical MACs
provided by the BGX.

8.1 BGX

Programmable MAC layer is implemented
in BGX. It is seen as a normal PCIe endpoint
and can be configured without explicit ma-
chine description provided. However, BGX-to-
Ethernet PHYs association needs to be passed
to the driver. Each of two available BGX
controllers can provide up to 4 Logical MACs
(LMACs) with maximum rate of 10 Gbps or
a single 40 Gbps LMAC. Any LMAC can be
connected to any of NIC’s Virtual Function. In
addition, each LMAC can store up to 32 MAC
addresses to match against with the intention
to drop or accept an incoming packet.

FreeBSD driver configures and enables
LMACs and is responsible for MAC setting and
link configuration or adjustments. All actions
are induced by the NIC driver. During normal
BGX driver operation the software polls the
MAC layer status to keep NIC Physical Func-
tion driver up to date.

8.2 Physical Function

Physical Function driver cooperates with
BGXes and TNS, creating a highly pro-
grammable network interface. Unlike other
popular NIC cards, CN88XX Physical Func-
tion does not provide networking capabilities
but rather is a resource manager for subordi-
nate Virtual Functions (VFs) and an interface
between MAC layer (BGX) and networking in-
terface layer (VNIC). PF supports up to 128
Virtual Functions using PCI SR-IOV technol-
ogy. The communication between PF and VFs
is held using private mailboxes for each VF.
The introduced FreeBSD driver uses generic
PCI IOV subsystem to create and configure
Virtual Functions. It then assigns LMACs and
polls for links status using BGX interface. Any

changes in MAC layer or configuration requests
are signalled to the VFs using Mailbox inter-
rupt. Physical Function receives requests from
the VFs in the similar manner.

8.3 Virtual Function

Virtual Functions implement networking
capabilities of VNIC. VFs are capable of per-
forming DMA transactions to and from the
main memory in order to transfer packet traffic.
Each Virtual Function contains a set of queues
(QS) that consists of:

• 8 x Completion Queue (CQ)

• 8 x Send Queue (SQ)

• 8 x Receive Queue (RQ)

• 2 x Receive Buffer Ring (RBDR)

The Completion Queue contains data de-
scribing all completed actions such as packet
send or receive. Other queues are assigned by
the Physical Function to the selected CQs, po-
tentially many-to-one. The transmitter side
uses SQ to describe the egress data and actions
that need to be performed on the packet be-
fore it can be sent (for example L3, L4 check-
sums calculation). Each SQ has assigned a des-
tination Completion Queue. Receive Queues
are VNIC’s internal structures that describe
how to receive packets. They need CQ and
RBDR assignments. More than one RQ can
be assigned to both CQ and RBDR. RBDRs
on the other hand describe free buffers in the
main memory that can be used to store received
data. Upon packet reception VNIC moves the
incoming data to the free buffer provided by the
RBDR descriptor and returns its physical ad-
dresses to the assigned Completion Queue. An
interesting capability of the NIC’s Queue Sets
is that if the VF is not enabled, its queues can
still be used by another, operational VF. This
gives a possibility to assign 1 QS to a single VF,
all Queue Sets to a single VF or anything in be-
tween. However, the presented driver utilizes
one Queue Set per VF by default.

7



9 Future work

9.1 4-level Page Tables

To improve kernel performance, all phys-
ical addresses from DMAP_MIN_PHYSADDR to
DMAP_MAX_PHYSADDR are mapped statically into
continuous VA region called DMAP (direct
map). When the PA space is fragmented (as
it is in a dual socket configuration), the VA
DMAP range is huge and exceeds the limit
what the core is able to address in 3-level Trans-
lation Table mode. Semihalf implemented a
patch that resolves those issues by creating
multiple regions of DMAP range to save space
and allow for dual socket device operation.
However the lookups in DMAP arrays are likely
to reduce performance and hence the 4-level
Translation Table solution is the prefered one.

9.2 Multiple ITS support

Currently, only ITS attached to socket-0
is operational but in case of dual socket system,
this resource is doubled. FreeBSD/arm64 lacks
support for multiple and chained interrupt con-
trollers therefore changes in the interrupts han-
dling code for ARM64 architecture need to be
applied.

9.3 I/O performance optimizations

Peripheral device drivers upstreamed
to FreeBSD-HEAD are not performance-
optimized. It was shown that Ethernet driver
does not offer line-rate performance, nor the
SATA presents satisfactory IOPS rate. To
deploy production-quality system performance
must be improved.

10 Acknowledgements

The project is a joint work of Semihalf
team, Andrew Turner, ARM Ltd., Cavium and
The FreeBSD Foundation.
Work on this paper was sponsored by Semihalf.

11 Availability

The code is publicly available beginning
with FreeBSD 11-CURRENT (r289550).

8


	Introduction
	Hardware overview
	Core complex and CCPI

	System bootstrap
	Early system initialization
	Interrupts delivery
	Generic Interrupt Controller v3
	Affinity-based routing

	ITS and Message Signalled Interrupts

	SMP
	SMP bring-up
	CCPI and dual socket operation

	PCIe
	VNIC
	BGX
	Physical Function
	Virtual Function

	Future work
	4-level Page Tables
	Multiple ITS support
	I/O performance optimizations

	Acknowledgements
	Availability

