
Porting FreeBSD to AArch64

Andrew Turner – andrew@fubar.geek.nz

12 June 2015



About me

Source committer – focusing on ARM

Freelance Software Engineer



Status of arm64 (AArch64)

Support to boot in QEMU committed to subversion

Some support for Cavium ThunderX in subversion

Boots on Xen, with a few patches

Only single-core, DMA is assumed to be cache-coherent for now



Timeline

First AArch64
GCC patch

May 2012

First AArch64
binutils patch

Jul 2012

AArch64
boot wrapper

Sep 2012

Foundation Model
released

Oct 2012

Ported GCC
and binutils

Oct 2012

FreeBSD
boot code

Nov 2012

Documentation
Oct 2013

Enable the MMU
Dec 2013

FreeBSD build
Infrastructure

Feb 2014

mountroot prompt
Jul 2014

First userland
instructions

Aug 2014

FreeBSD Foundation project
Nov 2014

Boot on QEMU
Jan 2015

Started committing to svn
Apr 2015



History of FreeBSD on AArch64

4 phases:

1. Early experimentation

2. FreeBSD subversion project

3. FreeBSD Foundation project

4. Committed to HEAD (main development branch)



Early experimentation

My early work to learn the architecture

1. ARM boot code

2. Simple ELF loader

3. Early ASM

4. C code



ARM boot code

Provided by ARM to initialise the hardware

BSD Licensed



Simple ELF Loader

Reads enough of an ELF file to run it

9 instructions



Early ASM

Written to become locore.S – the initial kernel code

1. Puts the hardware in a known state

2. Builds the initial pagetable

3. Enables the MMU

4. Branches to a virtual address

5. Calls into C code



C code

Mostly for debugging

Could write to the UART



Early issues

I No documentation until September 2013

I No debugger in the Foundation Model

I Stopped when enabling the MMU



FreeBSD subversion project

Moved to a FreeBSD project branch in February 2014

I Update the build infrastructure

I Started with external gcc, quickly moved to clang/llvm 3.4

I Initial port of loader.efi

I Imported locore.S

I Stub the kernel → implement as they are hit



clang/llvm

Ported to FreeBSD/arm64

Based on the old, buggy AArch64 backend

Crashed when building some files



Port loader.efi

An EFI application to load the kernel

Provides runtime configuration

Loaded the kernel from the host



Make the kernel build

Started with stub functions to make it build

And atomic operations – all static inline



Then make the kernel run

Started with locore.S from GitHub

Use EARLY PRINTF to watch the early boot progress

Add initial pmap handling

Faulted in functions as needed Implemented pmap from scratch



To the mountroot prompt

mountroot is when the kernel fails to mount the root fs

Need:

I Exceptions

I Thread/process creation

I User/kernel copy handling

But not devices



But we will need devices

Many parts are machine independent

Except the root device – nexus

Also need bus space to talk to the devices

And handling device memory and interrupts

For arm64 we need and interrupt controller and timer device



What about userland?

Can run from a small in-kernel fs

The kernel needs to set up the cpu to run userland

Userland needs something to run – crt1.o, libc

Skipped dynamic linking – not needed for init

Need to find out if userland code is running, without syscalls



More pmap

Userland breaks pmap

As userland progresses so does pmap

Ported the amd64 pmap code – simpler than fixing my code



And syscalls

Syscalls are handled as exceptions

Userland and the kernel need to agree on the syscall convention

Which register to place the syscall ID – on FreeBSD x8 Need to

signal to userland when the syscall failed



FreeBSD subversion project – Completion

I Finished in November 2014

I UEFI loaded loader.efi

I The loader loaded the kernel

I The kernel could start userland from a memory filesystem

I Starting to run init



FreeBSD Foundation project

Moved to a FreeBSD Foundation GitHub repository

Allowed collaboration with Ed Maste and Semihalf

Build with in-tree Clang and external binutils

Funded by:

I The FreeBSD Foundation

I ARM

I Cavium



More loader.efi

We cleaned up the kernel interface

And the UEFI interface

Could get device description from UEFI



Static userland

Added enough code to libc for sh and ls

And more pmap

Could run all from a 4MiB in-kernel fs

Moved to virtio-mmio when available



Userland finds bugs in the kernel

Shows missing tlb invalidation

And pmap – implement more stubbed functions

Handling of unmapped buffers



Dynamic linking

Handle program start – like crt1

Calls into the common rltd code

Need to understand the relocation types

Can be lazy and ignore lazy relocations

Faulted in more pmap code



Can we run make buildworld?

Port enough libraries – may disable some when not ready

Not all programs would build

And build with make -k – keep going

Fewer issues over time

Some are just stubs – libkvm



VFP – Floating-point

We got surprisingly fat into userland without VFP support

Needed a driver to handle context store/restore

I Enables the VFP unit when accessed

I Then saves VFP registers on context switch

I Restores registers on next access – only if current values are
stale



Committed to HEAD

Moved to the main FreeBSD development branch

Only QEMU support to begin with – Cavium to follow patches as
reviewed

Built as part of the Jenkins continuous building

Included in the regular snapshots

Build with in-tree Clang and external binutils



Review

Cleaned up code to get it ready for review

FreeBSD uses a Phabricator instance to review changes

Pushed patches to build for and boot on QEMU
(too many to list here)

Merged x86 and ARM efi loaders



Add Cavium ThunderX support

Added by Semihalf – zbb@

I Busdma

I GICv3 – interrupt controller

I ITS – for MSI/MSI-X

I ThunderX drivers



More changes

I ACPI

I hwpmc

I DTrace

I gem5 simulator support

ACPI by me, the rest from br@



FreeBSD on Cavium TunderX

Thanks to zbb@



Demo on QEMU



Thank You

Thank you to:

ARM:

I Andy Wafaa

I Mark Rutland

I Robin Randhawa

I Vassilis Laganakos

Cavium

The FreeBSD Foundation:

I Ed Maste

Semihalf



Questions?

andrew@FreeBSD.org

FreeBSD ARM resources:

Email: freebsd-arm@FreeBSD.org
IRC: #freebsd-arm64 and #bsdmips on EFnet

https://wiki.freebsd.org/arm64


