Molecular Evolution, Genomic Analysis and FreeBSD

Joseph Mingrone

Department of Mathematics and Statistics Dalhousie University

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

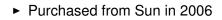
About the Bielawski Group

Small group (5 - 10 members)

- Molecular Evolution and Genomic Analysis
 - We analyze DNA sequences to make inferences
 - The Research is purely computational

Multidisciplinary

Outline


<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hardware

- Research tracks
 - Modelling evolution at the molecular level
 - MircroBiome / Metagenomics
- Software, Design decisions, Observations

Hardware

Computing Cluster: Awarnach

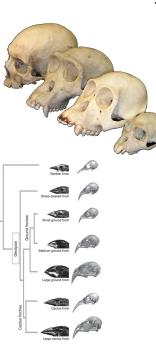
- Sun Fire V40z master node (two dual core Opteron 870, 16 GB ECC RAM)
- Twenty compute nodes (X4100), two dual core Opteron 270, 4 GB ECC RAM, two 73 GB disks and four gigabit ethernet ports
- 48-port gigabit SMC switch

Hardware Storage

- Asus RS300-E7-PS4 1U Server
- ► E3-1230V2 Xeon CPU
- ► Four Intel 60GB SSD (520 Series)
- ► LSI 9205-8e SAS controller
- Supermicro SC847E16-RJB0D1 JBOD with 10 WD30EFRX 2TB Hard Drives (ZFS raidz)

Hardware

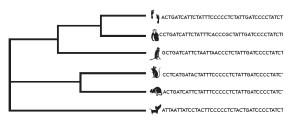
New Compute Node



► New Compute Node

► Four 12-core 6348 CPUs

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


▶ 256 GB RAM

Track 1: Background

- Studying evolution is studying the past
 - Clues in present day to infer past processes
 - Morphology from fossil record
 - Studies with some organisms
 - Genetic material contains many markers of events in evolutionary history

・ロト ・ 同ト ・ ヨト ・ ヨ

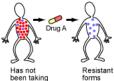
Track 1: Molecular Evolution Modelling

- Classify selection pressure at the protein and amino acid level
 - Purifying Selection
 - Neutral Evolution
 - Positive Selection

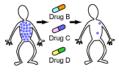
 Usually most interested in detecting sites under positive selection

Track 1: Arms Race

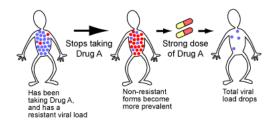
The law and order arms race...



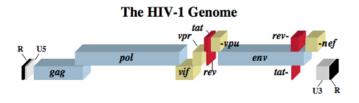
Track 1: Arms Race


Virus not resistant to Drug A
 Mutated forms resistant to Drug A

ing


survive

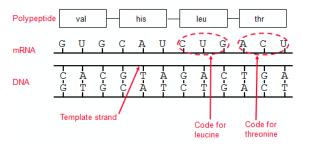
Drug A



Has been taking Drug A for some time

Few forms survive

Track 1: Analysis of HIV Genes


▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つ Q ()

- Viral Envelop (Env) 3/91
- DNA polymerase (Pol) 11/947
- Viral infectivity factor (Vif) 10/192

Track 1: Background

The Central Dogma of Biology

- DNA is made up of four nucleotides with four different bases: Adenine (A), Cytosine (C), Guanine (G), or Thymine (T)
- Codons specify amino acids, the building blocks of protein

Track 1: Redundant Code

	т	с	A	G
Т	T T T phe T T C phe T T A leu T T G leu	T C T ser T C C ser T C A ser T C G ser	T A T tyr T A C tyr T A A stop T A G stop	T G T cys T G C cys T G A stop T G G trp
с	C T T leu	C C T pro	C A T his	C G T arg
	C T C leu	C C C pro	C A C his	C G C arg
	C T A leu	C C A pro	C A A gln	C G A arg
	C T G leu	C C G pro	C A G gln	C G G arg
A	A T T ile	A C T thr	A A T asn	A G T ser
	A T C ile	A C C thr	A A C asn	A G C ser
	A T A ile	A C A thr	A A A lys	A G A arg
	A T G met	A C G thr	A A G lys	A G G arg
G	G T T val	GCT ala	G A T asp	G G T gly
	G T C val	GCC ala	G A C asp	G G C gly
	G T A val	GCA ala	G A A glu	G G A gly
	G T G val	GCG ala	G A G glu	G G G gly

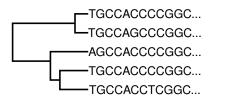
- $4^3 = 64$ possible codons (61 sense), 20 amino acids
- Code is redundant
- Nucleotide substitution may or may not mean change in amino acid

Track 1: A Measure of Selection Pressure

 d_S = rate of synonymous substitutions d_N = rate of nonsynonymous substitutions

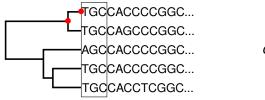

$d_N/d_S = 1$	Neutral Evolution
$d_N/d_S < 1$	Purifying Selection
$d_N/d_S>1$	Positive Selection

$$d_N/d_S = \omega$$

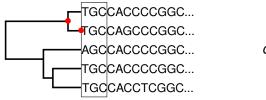

A measure of the strength and direction of selection pressure

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

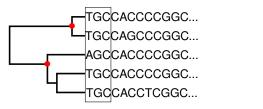
Track 1: Markov Process

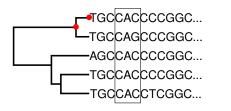


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



 $\boldsymbol{q}_{ij} = \begin{cases} \boldsymbol{0} \\ \pi_j \\ \kappa \pi_j \\ \omega \pi_j \\ \omega \kappa \pi_i \end{cases}$


◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 日 ● ◆ ○ ◆ ○


$$m{q}_{ij} = \left\{egin{array}{c} 0 \ \pi_j \ \kappa\pi_j \ \omega\pi_j \ \omega\kappa\pi_j \ \omega\kappa\pi_j \end{array}
ight.$$

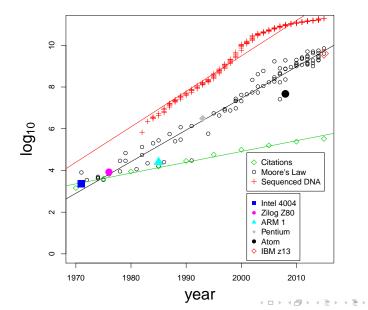
$$\boldsymbol{q}_{ij} = \begin{cases} \boldsymbol{0} \\ \boldsymbol{\pi}_j \\ \boldsymbol{\kappa} \boldsymbol{\pi}_j \\ \boldsymbol{\omega} \boldsymbol{\pi}_j \\ \boldsymbol{\omega} \boldsymbol{\kappa} \boldsymbol{\pi}_j \end{cases}$$

$$\boldsymbol{q}_{ij} = \begin{cases} \boldsymbol{0} \\ \boldsymbol{\pi}_j \\ \boldsymbol{\kappa} \boldsymbol{\pi}_j \\ \boldsymbol{\omega} \boldsymbol{\pi}_j \\ \boldsymbol{\omega} \boldsymbol{\kappa} \boldsymbol{\pi}_j \end{cases}$$

$$\boldsymbol{q}_{ij} = \begin{cases} \boldsymbol{0} \\ \boldsymbol{\pi}_j \\ \boldsymbol{\kappa} \boldsymbol{\pi}_j \\ \boldsymbol{\omega} \boldsymbol{\pi}_j \\ \boldsymbol{\omega} \boldsymbol{\kappa} \boldsymbol{\pi}_j \end{cases}$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ● 日 ● の へ ()・

Track 2: MircroBiome / Metagenomics


- Culturing diverse microbial communities in the lab can be difficult
- Sequence DNA as it exists in the natural environment (metagenomics)
- Understand associations between changes in microbiomes and changes in complex systems
 - BiomeNET BioMiCo: group microbial communities according to properties

El-Swais, Heba, et al. "Seasonal assemblages and short-lived blooms in coastal north-west Atlantic Ocean bacterioplankton." Environmental microbiology (2014).

Shafiei, Mahdi, et al. "BioMiCo: a supervised Bayesian model for inference of microbial community structure." Microbiome 3.1 (2015): 1-15.

Shafiei, Mahdi, et al. "BiomeNet: A Bayesian model for inference of metabolic divergence among microbial communities." (2014): e1003918.

Research and Computing Technology are Coupled

 Originally Solaris, since 2009 FreeBSD release (7.x -FreeBSD 10.1), STABLE on storage / new compute node

- Originally Solaris, since 2009 FreeBSD release (7.x -FreeBSD 10.1), STABLE on storage / new compute node
- Poudriere, VirtualBox (MatLab)

 Originally Solaris, since 2009 FreeBSD release (7.x -FreeBSD 10.1), STABLE on storage / new compute node

- Poudriere, VirtualBox (MatLab)
- ZFS (master node and storage server), NFS

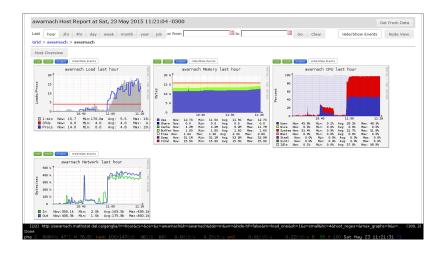
 Originally Solaris, since 2009 FreeBSD release (7.x -FreeBSD 10.1), STABLE on storage / new compute node

- Poudriere, VirtualBox (MatLab)
- ZFS (master node and storage server), NFS
- ▶ math/R, lang/perl5.20

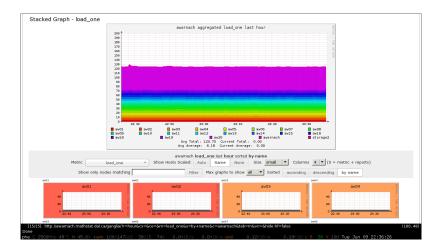
 Originally Solaris, since 2009 FreeBSD release (7.x -FreeBSD 10.1), STABLE on storage / new compute node

- Poudriere, VirtualBox (MatLab)
- ZFS (master node and storage server), NFS
- ▶ math/R, lang/perl5.20
- ► print/texlive-full

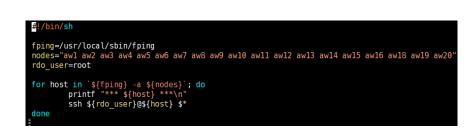
 Originally Solaris, since 2009 FreeBSD release (7.x -FreeBSD 10.1), STABLE on storage / new compute node


- Poudriere, VirtualBox (MatLab)
- ZFS (master node and storage server), NFS
- ► math/R, lang/perl5.20
- print/texlive-full
- biology/paml / Proteus

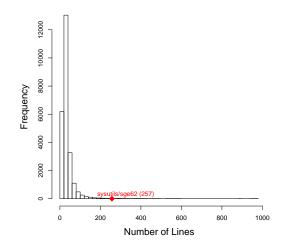
- Originally Solaris, since 2009 FreeBSD release (7.x -FreeBSD 10.1), STABLE on storage / new compute node
- Poudriere, VirtualBox (MatLab)
- ZFS (master node and storage server), NFS
- ► math/R, lang/perl5.20
- print/texlive-full
- biology/paml / Proteus
- biology/ncbi-blast+, Diamond, Humann, Qiime, Metaphlan, Biomenet, BioMico, BMTagger, PEAR


security/tmux-cssh

	GTW/Z		
GRWZ	(<u>G</u> TVV73)	(<u>G</u> TVV/7/'	anv.B
(<u>GRV</u> / <u>9</u>)		GRV/[]	GTW/12:
GRVAB'		GTXV/E	(GTV/16) •
	(GTX//KP) •	GRV20	
<pre>(tmux-cssh1:ssh* [0] 1:gly 2:phe= 3:awarnach* 4:trp phe C 2200MHz 48°C M 45.8% tank 108/d</pre>	147618 38618 74% 0.0MiB/s 0.8MiB/	's em0 1.47Ki8/s 1.20Ki8/s 8 9	16 V 100 Tue Jun 09 22:32:11


sysutils/ganglia-monitor-core sysutils/ganglia-webfrontend

sysutils/ganglia-monitor-core sysutils/ganglia-webfrontend


Basic Unix Tools

Batch Submission, Resource Management with Sun Grid Engine

Batch Submission, Resource Management with Sun Grid Engine

Distribution of Port Makefile Size

sysutils/slurm-hpc (slurm-wlm)

- Despite the name, Simple Linux Utility for Resource Management (Slurm): "Portability: Written in C with a GNU autoconf configuration engine. While initially written for Linux, Slurm has been ported to a diverse assortment of systems."
- Sequoia, an IBM BlueGene/Q system at Lawrence Livermore National Laboratory with 1.6 petabytes of memory, 96 racks, 98,304 compute nodes, and 1.6 million cores, with a peak performance of over 17.17 Petaflops."

Porting Software Written by Biologists

<ロ> < 団> < 豆> < 豆> < 豆> < 豆> < 豆</p>

Other Cluster Options

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Thank You

Questions?

Image credits: Arms race: www.inkcintc.com.au

HIV images: http://evolution.berkeley.edu/evolibrary/article/medicine_04