
Rally Ventures

Abstract

• The talk begins with the early days of Unix from my
experience at Bell Labs and discusses some of the
key decisions made designing the shell language.

• Why we did what we did. What worked and what
changes were made early on.

• Some of the shell innovations will be discussed as
well as what we learned later.

6/12/15 1

Rally Ventures

Early days of Unix and
design of sh

Stephen R. Bourne

Rally Ventures and ACM Queue EiC

BSDcan, Ottawa

June 12, 2015

6/12/15 2

Rally Ventures

How I got to Bell Labs

• At Cambridge with Wilkes and Wheeler

• Algebra systems for Lunar Theory (CAMAL)

• Z language and life game (Conway ‘70)

• Algol68C compiler and ZCODE

• Cambridge CAP operating system

• Arrived at Murray Hill January 1975

6/12/15 3

Rally Ventures

Brunsviga at Mathematical
Laboratory

6/12/15 4

Rally Ventures

Unix beginnings

• First Edition 1971
• Running on the PDP 11

• Hierarchical file system

• Processes

• Simple IO

• Pipes (1972)

• BCPL, B, C

• Shell
• Script recording with simple GOTO

• /etc/glob for wild card characters

• Shell scripts are not filters

• No control flow or variables ($1 - $9, $a - $z)

• troff and nroff
• Text processing funded Unix work

• The UNIX Time-sharing System - A Retrospective by
Dennis Ritchie

6/12/15 5

Rally Ventures

Key Players

• Dennis Ritchie (C and drivers)

• Ken Thompson (kernel)

• Doug McIlroy (pipes)

• Joe Ossanna (nroff, troff)

• Brian Kernighan (C book)

• Mike Lesk (tbl, lex, uucp)

• Steve Johnson (portable C, yacc)

• Al Aho (awk, yacc)

• Stu Feldman (F77, make)

6/12/15 6

Rally Ventures

Unix Development

• Two adjoining rooms in 6th floor attic

• PDP 11/45

• Model 33 teletypes and Tektronix 4014

• uucp – no other network

• 300/1200/9600 baud modems at home

• Instant design and quality feedback

• Source code and man pages online

• Directory conventions (etc, bin, src, man, …)

• RP05 disks and vertical surfaces

6/12/15 7

Rally Ventures

Sixth edition 1975

• Written in C

• 40 system calls

• grep man page was 20 lines

• Used outside of Unix group

• ed, grep, sed

• cc *.c, interfaces as .h files

• db, cdb

• Simple shell

6/12/15 8

Rally Ventures

•

6/12/15 9

Rally Ventures

•

6/12/15 10

Rally Ventures

•

6/12/15 11

Rally Ventures

•

6/12/15 12

Rally Ventures

Seventh edition and BSD

• 1976
• Wrote sh and adb

• 1977
• make, lint, awk, uucp

• 1978
• 32 bit port and Berkeley

• Seventh edition published

• File system improvements

• 32-bit port to Interdata

• 1977 – 1980
• Bill Joy vi and the C shell
• BSD virtual memory

• BSD 3.0 and overnight install

6/12/15 13

Rally Ventures

Seventh edition release
management

• Utility owned by last person who touched it

• Makefiles for everyone

• Some attempts to de-lint

• man pages, src, executables, libraries

• Directory structure

• But no source control or versioning

• Ran compiles from release tree

6/12/15 14

Rally Ventures

Why we started over and 
re-wrote sh

• Meeting in December in Murray Hill with Dennis

• Ken Thompson was in Berkeley for a year

• PWB Mashey shell started mid 1975

• All were patched versions of osh

• Started writing code toward end of 1975

• First versions deployed in early 1976

6/12/15 15

Rally Ventures

sh as a language

• Typeless

• Strings are first class and only citizens

• Delimited by blanks and reserved characters

• Serves as interactive and scripting language

• Provides programmable interface to the Unix system
• Variables and substitution

• Control flow

• Signal management
• Process management
• eval

6/12/15 16

Rally Ventures

Shell Design and
implementation

• ALGOL 68 concepts
• Program flow
• Closed forms (if … fi, case… esac)
• Complete substitutions anywhere

• No limits on strings (or anything else)

• String quoting rules

• Return values used for conditionals (exit=)

• Performance and strings

• Memory allocation

6/12/15 17

Rally Ventures

Shell features

• Multi character variables

• Environment variables

• Here documents (<<) with EOF and substitution

• Scripts as filters

• Command substitution

• Commands as functions (later)

6/12/15 18

Rally Ventures

Complete list from 1977
• dynamic storage management (for variables &c.)
• control structures (at tty as well)
• parameter substitution + - ? =
• case pattern matching
• path searching
• built in file name matching (/etc/glob)
• no re-evaluation after $ substitution
• more general patterns (/sys/s?/...)
• general trap and fault handling
• control over child signals
• piping into or out of loops
• mail notification
• argument substitution eg nohup(a;b)
• efficient for loop and reads from files
• error recovery from sub command failure assured
• shell error handling can be controlled
• checks for cat >x >x and cat >x | wc
• cannot execute/cannot find distinguished
• general redirection e.g. 2>…
• input and execution traces; also no execution mode
• wait is interruptible
• cat >x hangs on open can be INTR’d

6/12/15 19

Rally Ventures

Unix at the time

• In 1975 we were running sixth edition Unix

• Did not use the C library
• Mostly because I didn’t need to

• And also because of malloc conflicts

• Considered Yacc and lex but too heavyweight

• No stdio or string copy routines

• Directory layout fixed size

• No setjmp and longjmp (added)

6/12/15 20

Rally Ventures

Memory management

• Overall flow
• Read in element
• Evaluate from internal tree recursively
• Same from tty or file

• During evaluation anything goes
• Language is recursive so C stack not helpful
• Variable assignment of arbitrary length strings

anywhere e.g.

X = ` cat <<!
 cd `pwd`
 for v do read v; echo $v; done
 !
`

• Interleaved heap and stack

• Stack used for permanent objects including parse tree and
partially constructed strings

• No string length or any other "arbitrary" length restrictions

6/12/15 21

Rally Ventures

Memory Management credits

• A Partial tour through the UNIX shell
- Geoff Collyer, University of Toronto

- Suspect this based on AT&T system 3 shell
- Based on bugs reported

• Annotated source by Akira Nakamura 1990

6/12/15 22

Rally Ventures

Memory allocation 
(upside down)

6/12/15 23

C stack from top down

sbrk from bottom of memory

sh heap storage at bottom of this area

stack for strings, command parsing at top

stack and heap are interleaved

Rally Ventures

Memory allocation

ß Base of heap at bottom of memory

 Interleaved with stack items awaiting recovery

ß stakbsy # chain of stack blocks that have become
 # covered up by heap allocation. `tdystak’
 # will return them to the heap

ß Top of heap

ß stakbas # base of entire stack

ß stakbot # base of current stack item

ß staktop # top of stack

ß brkend # top of entire stack

ß C stack from top of memory down

6/12/15 24

Rally Ventures

/*
 * UNIX shell
 *
 * S. R. Bourne
 * Bell Telephone Laboratories
 */

/* To use stack as temporary workspace across
 * possible storage allocation (e.g. name lookup)

 * a) get ptr from ‘relstak’
 * b) can now use ‘pushstak’
 * c) then reset with ‘setstak’
 * d) ‘absstak' gives real address if needed
 */

#define relstak() (staktop-stakbot)
#define absstak(x) (stakbot+Rcheat(x))
#define setstak(x) (staktop=absstak(x))
#define pushstak(c) (*staktop++=(c))
#define zerostak() (*staktop=0)

6/12/15 25

Stack and heap

Rally Ventures

The hard bits

• Signals and process management
cat <<! &

xyz

!

• Quoting specification and exclamation

• Error recovery and reporting

• Debugging memory allocation

• Here documents

• Performance

• The usual corner cases

6/12/15 26

Rally Ventures

Quoting hell

• There are at least three conceptually distinct mechanisms
• $ parameter substitution
• argument splitting and parsing commands
• file name generation (ls *)

• Suppose $1, $2 and $3 have the values
• $1 = <>
• $2 = <a b>
• $3 = <*>

• Some choices are
 arg nsh osh
 $1 - -
 $2 <a> <a>
 $3 <...> <...>
 "$1" <> <$1>
 "$2" <a b> <$2>
 "$3" <*> <$3>
 "\$1" <$1> <$1>
 '$1' <$1> <$1>

6/12/15 27

Rally Ventures

Meta character rules

 \ $ ` ’ " * /

' n n n t n n n

` y n t n n n n

" y y y n t n n

6/12/15 28

Rally Ventures

Unix group conversion

• printing exit= after each command

• od (octal dump) hence “done”

• goto gone
“The absence of a goto is going to be mourned loudly by
many at BIS. We have a lot of COBOL and Assembler
types here who don't seem able to live without it.” (1977
comment)

• wait command interruptable
“An interruptable wait has been long awaited and
welcomed. Maybe it should have a flag argument to make
it uninterruptable if desired.” (1977 comment)

• sh scripts as filters (what it used to be)

• 32 bit porting 1978 and *0

• sbrk and more porting grief (things you don’t think of when
you write the code)

• asked Dennis one day what sbrk recovery was in fault
routine

• never well documented

6/12/15 29

Rally Ventures

Language battles - C vs sh 
From srb Sat Mar 5 13:17:31 1977 

More seriously wrt do … done

Since there seems to be no hope of C becoming
an expression language (in which case it would be
potentially more suitable for the shell) there is
equally no hope that the shell and C will be the
same language.

The worst problem is the if...else problem which in
C requires a lookahead. The shell cannot afford to
do lookahead since it is an interactive language.

6/12/15 30

Rally Ventures

‘word ‘ – ‘drow’ dangling
‘else’ and keeping if … fi

• Ways of dealing with the word drow “problem”

case a in ... esac case a { ... }
for i do ... od for i { ... }
for i in a b c do ... od for i in a b c { … }
while c do … od while c { … }

• Separating for and while (originally one construction)
is reasonable in the command language context.

• Its use in programming languages is to look for a
member of a set with some specific property; I
cannot think of a use for this in the shell.

6/12/15 31

Rally Ventures

‘word ‘ – ‘drow’ dangling
‘else’ and keeping if … fi

For all of the above both forms can easily be provided.

if c if c
then d d
else e else e
fi

Is the dangling else is better than the fi. One way out of
dangling ‘else’ is to say that there are two constructions one
with no else part and the other with a ‘then’ part

if c
 d

if c
then d
else e

‘then’ signals the coming of the else (so to speak). The
dangling else has gone away but one has to remember that
‘then’ is written if there is an else part. It does avoid the
lookahead problem.

6/12/15 32

Rally Ventures

Keeping if … then … else

It seems rather radical to remove both the `structured
programming' primitives (if, while). They are both used
at present. The alternative for ‘if’ using ‘select’ is
somewhat cumbersome and unintuitive.

Using && and || produces even more amazing looking
programs. e.g.

 if a; then b; else c; fi

Becomes

 {{{a&&{b;set $rc=$r; true}}||c; set rc=$r;}; test rc = 0}

6/12/15 33

Rally Ventures

Keeping case … esac

The choice of words (select, switch, case, ...) seems
unimportant although of these ‘case’ is shortest.

The proposed construction is more error prone and is
likely to give surprising results. e.g.

 case $1 { ... }

will distribute the case inside the {...} so that leaving out
the ; is a disaster.

Also how does

 case $1; {-x
 -y
 echo x or y
 }

parse? There is no natural way to extend to more than
one case selector.

At present there is enough redundancy to find mistakes.

6/12/15 34

Rally Ventures

Associative memory aka
Environment variables

• “The shell has had a keyword mechanism working
from within the shell (the wrong place) for a couple of
years.”

• “The reason for introducing environments was to
make this mechanism uniform for shell procs and C
programs.”

• Named variables and context
• Debates over sh conventions

• x=y cmd …

• cc, make, and dd used x=y in its arguments

• You don’t have to know variables at each process
level

• Unix process rules - no child surprises

• Keyword parameters should be settable either at the
call of a cmd, or in an enclosing environment.

6/12/15 35

Rally Ventures

Environment variables

• A pcs should be able to have `local' names. i.e.
names which are not passed on to children nor
cause the behaviour of the child to be modified in
any way.

• The names used by a child can be set by any
ancestor of the child. It should not make any
difference to the child how the name was set.

• It should be possible to set a name for use by
descendants.

• A pcs should not have to be a postman for all the
names which are being passed. It only need look at
those intended for it. Others will automatically be
passed on to children.

6/12/15 36

Rally Ventures

Environment variables – alternatives 
Wed May 17 09:04:24 1978 

Viewed from a C routine there are four levels of scope:

a) Automatic variables, whose life is the subroutines’;
b) External variables, whose life is the memory load;
c) Shell environment variables, whose life is the session;
d) Files, which last forever.

It would be nice if all of these looked the same. For example:

• a,b, and d are binary; c is string
• only c has "export" and "readonly”,
• a,b, and d are accessed by address;
• c has associative searches for "x=”.

We could have a storage class "session" which was like
"extern” except it lives longer.

Unfortunately, this requires enormous system changes.

So make session variables look just like files, i.e. that a new set
of routines sopen, sseek, sclose, sread, and swrite exactly
image open, seek, ... except that they work on session files.

6/12/15 37

Rally Ventures

Environment variables  
Fri May 12 01:44:05 EDT 1978

The shell has been modified to take advantage of the
new UNIX environment passing stuff (notably execve).

As a consequence shell variables are initialized from the
environment but are not transmitted back to the
environment by default.

 export name

causes name to be sent to the environment when
processes are created

6/12/15 38

Rally Ventures

Early development - quoting  
Thu Jun 3 18:21:29 EDT 1976

• In response to popular demand a number of changes
have been made to the shell. Please let me know if
there are any problems (srb).

• $ is no longer used as the quoting character; instead
a \ is used. For example
• echo \; will print ;
• echo \$ will print $

• Within double quotes the meaning of \ is
somewhat modified and the only characters
escaped are " $ and newline.

• A new quoting mechanism '...' has been added that
inhibits all interpretation of the enclosed string. For
example
• echo '$1' will print $1

• echo '\\' will print \\

6/12/15 39

Rally Ventures

Early development ….

• ‘here’ documents are processed in one of two ways
depending on whether the string following << is
quoted or not.
• not quoted (e.g. <<!)

• a \ is used to escape a newline, $ and the
first character of the terminating string.

• Parameter substitution occurs within the
document.

• quoted (e.g. <<\!) all characters are passed
literally and no parameter substitution occurs.

• Command substitution is now written ` command `
• Nested uses now need to be quoted.

6/12/15 40

Rally Ventures

Early development ….

• Built-in names $- $$ $# $! $?
• "$@" is the same as "$1" "$2" ...
• Error checking e.g.

The notation ${...} is now checked more thoroughly.
Also the default strings are only evaluated when
needed so that e.g.
 echo ${d-`newfile`}
only executes the command newfile if $d is not set.

• Interrupt handling e.g.
• echo */*/* is now interruptable.

• Keyword parameters only before cmd
• Performance improvements

Fri Mar 4 17:02:57 EST 1977
Some modifications have been made to the shell.
One result is that it now runs up to twice as fast
as the current shell. It also uses less space. As
usual some bugs have gone and some more
have appeared (although in both cases they escape
my test programs)

6/12/15 41

Rally Ventures

Selling PWB group
• Our situation is as follows:

• We would like to end up with the same sh as you people
use, as modified only slightly for local system peculiarities
(like the use of logtty(), logdir(), and logname() to get at the
extra 32 bytes in the u area).

• We are really hurting on systems B and D because of the
number of processes generated. The shell I've been
working on could be installed any time, would be completely
upward compatible with what we've got, but much faster for
shell procs. There is therefore a great desire to do this until
the hardware is upgraded (in several months).

• Given the extent of sh use, and the fact that many projects
around here use it for their daily work in deadline-driven
situations, we simply cannot live with a traumatic
conversion, unless that conversion:

• Gains greatly in performance, compared with the
upward-compatible sh that we could install

Or
• Gains greatly in expressive power, again,

compared with what we could install in an upward
compatible way

6/12/15 42

Rally Ventures

In line (here) documents – PY
shell (Mashey) debates

The new shell provides a notation for in line.

At present the MH shell makes a temporary file copy of the
information not made by the PY shell.

a) an EOF indication is given to the subcommand; (which
means it can do block reads and there is only one EOF
convention)

b) the shell can recover from an error in the execution of the
subcommand

c) parameter substitution is available without change to the
notation

d) a shell file can be parsed without the need to execute the
subcommands

This copy can be avoided in the MH shell without changing the
notation but in one case this will not provide an EOF indication
to the subcommand and the implementation is complicated.

6/12/15 43

Rally Ventures

PWB shell differences

a) After parameter substitution psh interprets syntactic
characters, rsh does not. rsh provides `eval' for re
interpretation.

b) \" \$ \" \\ \newline \$ \`
c) $$ $pid
d) <-- pump <<!
e) control structure; mostly straightforward except for goto and

switch without breaksw.
f) = a b c set ...
g) .path
h) exit default 0 default $r
i) onintr trap
j) operator precedence of && || different
k) fd2 2> 2>>
l) glob no match as is
m) $ax ${a}x
n) sh -t !(error !(ok
o) prompting rules are different
p) $t set not set
q) chdir no default default $h
r) next .
s) opt different flags setting rules (+x -x)

6/12/15 44

Rally Ventures

adb – a debugger

• Written to debug Algol68C port

• Added overlays via exec

• adb could run on one machine debug another and be
compiled on a third

• How to separate out representations

6/12/15 45

Compile Debug

Run

Rally Ventures

The C language and libC

• Types
• Structures like Algol68 not PL/1
• Void
• Pointers with explicit dereference
• Casts
• L and R values
• Unions added

• Functions with local and global variables
• No recursion
• All functions returned a value

• Memory management
• malloc, free
• Strings done “by hand” no ’strcopy’
• No array bound checking

• libC then stdio (later)

• Interfaces via .h files
• Conventions for initializing global variables
• Where instances are created

• define vs declare

6/12/15 46

Rally Ventures

Usage by langpop

6/12/15 47

Rally Ventures

Various shells

• Original Thompson shell
• 3 man pages

• sh
• 6 man pages

• bash man pages and word count
• 110 man pages

• 4890 37094 329778

• POSIX and ksh
• Early 80s

• dash
• A return to sanity ?

6/12/15 48

Rally Ventures

Shell shock

• Suspect code written in 1993

• Unsuccessful in reaching authors

• Was it a simple error in using command line reader
• Even that is a bug

• Most of environment (e.g. Apache) not present in ‘93

• Why did it take so long to surface – or did it

6/12/15 49

Rally Ventures

What worked and what I
would have done differently

• Write code others can read (A68 macros)

• Memory management fragile when porting

• Functions as first class elements

• Add some real support to debug scripts

• Using 8th bit of byte as quoted character marker

• Start somewhere and iterate

• Have real users and hear what they say

• Resist feature creep
• The shell can only solve so many problems

• cat –v considered harmful (Pike)

6/12/15 50

Rally Ventures

Now what

• ACM Queue
• Publishing for 10 years now

• Focus is on problem not solution

• Moving upstack
• Will publish every other month via app

• Algol68C
• Finish port
• Incorporate libraries

• Open source release

6/12/15 51

Rally Ventures

Thank you and Questions

6/12/15 52

Rally Ventures

Functional interfaces
STKPTR getstak(asize)
 INT asize;
{ /* allocate requested stack */
 REG STKPTR oldstak;
 REG INT size;

 size=round(asize,BYTESPERWORD);
 oldstak=stakbot;
 staktop = stakbot += size;
 return(oldstak);
}

STKPTR locstak()
{ /* set up stack for local use
 * should be followed by ‘endstak'
 */
 IF brkend-stakbot<BRKINCR
 THEN setbrk(brkincr);
 IF brkincr < BRKMAX
 THEN brkincr += 256;
 FI
 FI
 return(stakbot);
}

STKPTR cpystak(x) STKPTR x; {
 /* Copy a string onto the stack and allocate the space */
 return(endstak(movstr(x,locstak())));
}

6/12/15 53

Rally Ventures

Functional interfaces
STKPTR endstak(argp) STRING argp; {
 /* For use after ‘locstak' to hand back new stack top and then
 * allocate item
 */
 REG STKPTR oldstak;
 *argp++=0; oldstak=stakbot;
 stakbot=staktop=(STKPTR)round(argp,BYTESPERWORD);
 return(oldstak);
}

VOID tdystak(x) REG STKPTR x; {
 /* try to bring stack back to x */
 while(ADR(stakbsy)>ADR(x)){
 free(stakbsy);
 stakbsy = stakbsy->word;
 }
 staktop=stakbot=max(ADR(x),ADR(stakbas));
 rmtemp(x);
}

VOID stakchk() {
 if((brkend-stakbas)>BRKINCR+BRKINCR){
 setbrk(-BRKINCR);
 }
}

6/12/15 54

