Embedded FreeBSD Development
and Package Building
Via QEMU

Sean Bruno, sbruno@FreeBSD.org

Stacey Son, sson@FreeBSD.org

Overview

e Significant Events in the History of Emulation
* A Very Brief Introduction to QEMU

e QEMU User-Mode Emulation

* Misc Binary Image Activator

e Cross Development using QEMU

e Poudriere Bulk Cross Building (Demo)

e Current State and Future

e Credits and Q&A

(ij Significant Events in the

History of Emulation

 Theory: Universal Turing
Machine (1936)

e Cross Development:
Gates/Allen's Altair 8800
Emulator (1975)

e Transparent: Apple's (or
Transitive's) Rosetta (2006)
and 68k emulator (1994)

(j Significant Events In the

History of Emulatlon

e Theory: Universal Turing
Machine (1936)

e Cross Development:

Gates/Allen's Altair 8800 PEE | o
Emulator (1975) 1 . . Popular Electronics
WA R) moscmamecen

* World's First Minicomputer Kit
to Rival Commercial Models...
“ALTAIR 88IH)" save oven sio00

e Transparent: Apple's (or
Transitive's) Rosetta (2006)
and 68k emulator (1994) T T T

n Under- msamn ific Caleulntor Project
e CCD%=TY Camems Tube Succetion?
o Thyristes-Contralled PhotoFather

TEST REPORTS

Significant Events In the

History of Emulation

e Theory: Universal Turing
Machine (1936) | Rosetta.

The most amazing software
you’ll never see.

e Cross Development:

Gates/Allen's Altair 8800 _ =
Emulator (1975) L ——————

Group:

e Transparent: Apple's
(or Transitive's)
Rosetta (2006) and 68k—‘
emulator (1994) =

Word Uscument. <

Intro to QEMU

e QEMU = Quick EMUlator
e Fast, flexible, open source hardware emulator

 Has played a quiet but essential role in many other
projects, including :

- KVM

QEmMuU

— VirtualBox (forked version)

— Android SDK (forked version)
* |n fact, a lot of embedded SDK's

(3 QEMU's History

o Started by Fabrice Bellard in 2003
- FFMPEG, TinyCC, TinyGL, JSLinux, etc.

o Started by Fabrice Bellard in 2003

- FFMPEG, TCC (and OTCC), JSLinux, etc.

 Initially a portable JIT translation engine for cross
architecture emulation (aka. User Mode Emulation)

User User User Host Native
Emulation || Emulation || Emulation ||° TLO‘?"” '
= pr— P
ﬂ\pp -, [App [App | -
SARCANPAT
— mpile
Emulated ||| Emulated ||| Emulated s
Syscall Syscall Syscall
Shims Shims Shims
T — ™ ™71
1 I I 1
w w s ¥
F‘ v
[Host Kernel, Pseudo Drivers \d

0 QEMU's History

o Started by Fabrice Bellard in 2003

- FFMPEG, TCC (and OTCC), JSLinux, etc.

e Initially portable JIT translation engine for cross
architecture emulation (aka. User Mode Emulation)

 Emulation of PC hardware added | ™o Emiaion |

) /App" /App"
(aka. System Mode Emulation) @)R &
) 4 4
Floppy Drive Emulator I T T
A Target Kernel ?d
= & .Emulated CPU, MMU, 1
and I/O

O QEMU's History

o Started by Fabrice Bellard in 2003

- FFMPEG, TCC (and OTCC), JSLinux, etc.

e Initially portable JIT translation engine for cross
architecture emulation (aka. User Mode Emulation)

« Emulation of PC hardware added
(aka. System Mode Emulation)

* Virtualization, Management API, Block Layer, etc.

e " ™ 5ﬂ‘i(V M w VirtualBox

the
rackspace|

cloua

fﬁv' N “ >
™ .
Mern MKVM $gus

(j QEMU's History

F I

|
~ VENOM Vulnerability

- : L
HYPERTISOR = HYPERVISOR

')/ QEMU User Mode Emulation

- [User |[User || User Host Native |
* Only CPU IS emU|at3d. Emu_la_ﬁon Emglgtian ET‘I”I!.._.II_S_.ﬁDT"I Dev_ﬂ;a;neni
MMU, /O, etc. are not. G | & | op) -
1/ 01 @&/ | \n)
&V ||\ (;C;“Ef)
¢ SyStem Ca”S are Emulated ||||Emulated |||| Emulated _ple
translated to host calls e IS G
and/or emulated. Shims ||| Shims ||| Shims
e Can use native host tools ' ' v

for cross development.
Cross debugging and

testing. Flonpy Drive Emulater

‘

[Host Kernel, Pseudo Drivers

)/ QEMU User Mode Emulation

 Only CPU is emulated. [User | User [User | HostNaive |
MMU |/O etC are nOt Emu_ls_ltmn Em{glg_tlun Err:n_glg_mn Tools
! !]] F&PI}‘-, .-’/APP\\"-, -"'XAPP\"'- =
1 L — VN /
G| |\ (; Cross |
° tSySte|rr-|t cc?ltls la"re t " Emulated |||| Emulated |||| Emulated ‘ _PJ
ranslate O host calls Syscall Syscall Syscall IDE
and/or emulated. Shims Shims Shims
2 h I I [I |
e Can use native host tools H ; ; H
for cross development. —
CrOSS debugg|ng and [Host Kernel, Pseudo Drivers d]
testing.

(More on this
In a minute...)

)/ QEMU User Mode Emulation

e Only CPU is emulated. —User Y User Y User) FostName)

MMU. I/O. etc. are not Emulation || Emulation || Emulation DB”_?":‘;’GFT;”B”‘
) ’] . k@ p I;\I :f/ A p p‘_l:l ::./ A p p\ ;-

« System calls are trans- = | | @

Ia.ted tO hOSt Ca”S and/Or Emulated ||| Emulated |||| Emulated -
S [l S Il S [l

emulated.

e Can use native host tools ' ' ¥ '
for cross development. ' L L v
Cross dEbugglng and [Hnst Kernel, Pseudo Drivers

testing. o e

(Remember
these guys?)

(j System Call Argument

Translation
Targ et(mIpS) i\ H()St(amd64) Storage of the value D7C4,,
° Endian . Big Endian Little Endian

- Byte Swap Arguments

0 System Call Argument

Translation
Target(mips) = Host(amd64)

« Endian:
- Byte Swap Args
e Word Size :
- 32-bit to 64-bit conversion

Int32 Memory Space

T T T T
\\\ \\\ \\\ \\
A "\ h LY 3 N LY \\
) \ \ \ \
Truncation L.* _ N\ 1 N\ } N
. .\\\ . .\\\ . .\\\ \\\
Intb4 Memory Space
II
| !
| / |I |
II. I'I I,' II|
| [| |
‘|’ II | I|
o | f
¥ |

(j System Call Argument

Translation

Target(mips) =~ Host(amd64)
 Endian:

— Byte Swap Args
 Word Size :

— 32-bit to 64-bit conversion
 ABI Differences:

- e.g. 64-bit arg passed in two
evenly alighed 32-bit registers

— Repackage 32-bit registers
Into a 64-bit argument

)/ System Call Argument

Translation
Target(mips) =~ Host(amd64)

e Pointers:

— Strings (No Problem)

- Arrays (Byte Swap, 32to64
depending on element type)

— Structures (Byte Swap,
32to64 depending on
elements types, offsets)

— Temporary buffer
management and locking

A

O Problem System Calls

 mmap() and friends

e Signals related calls

e fork(), threads and _umtx_op()
e joctl() and sysctl()
e sysarch() - ${ARCH} dependent syscalls.

e Other misc calls (most of which we simply
don't support but don't need).

‘ T&fg@t code and QEMU Target: mmap(,MAP_FIXED) » Host Mapping

use the same address
space.

 Target MAP_FIXED
mappings that conflict
with the QEMU host's
mappings are mapped

QEMU Offsets

Target Mapping

Host Mapping

Host Mapping

elsewhere but then fixed
It In the emulation.

e QEMU keeps a table of
all the host mappings.

»QEMU Offsets

Target IY/Iapping

Target Mapping

Host Mapping

o

0

Signal Handling

Initialization of ;
‘ CPU Translator

Load ELF Binary
; Translated Code
Main Loop | Execution
T — —
Host SysCall
—— Shim
ispatcher: Make New
systemcal, |—® Signal Handler Translation Block
signal, etc.
thr_ - pthread
T T no

Find Translated

Block

TB Found?

e Target signals are mostly muxed with host signals.

e Target signals are queued and then dispatched out the main loop.

 Therefore, the emulation of the basic block has to finish before target
gets the signal.

rj Threads and _umtx_op()

 Threads are mapped to pthreads one-to-one.

e The undocumented umtx_op() system call supports
many operations or commands that embedded flags
Into the same field as counters/semaphores.

e.g. UMTX _OP_SEM2_ WAIT, the high order bit of
semaphore is a 'has waiters' flag. The kernel ends
up checking or flipping the wrong bit when the host
and target are different endian. Currently, we do
user level emulation of these => Slow/Ugly

Solution? (Maybe add other endian versions of these
calls.)

(j loctl() Thunking

e loctl() and sysctl() are used and abused for passing
large amounts of data in and out of the kernel.

 Thunking — A generic way using macros to convert
data flowing in and out with the ioctl() system call to

save LOC. e.g...

IOCTL (TIOCFLUSH, IOC_W, MK _PTR(TYPE INT))

IOCTL (TIOCGWINSZ, IOC R,
MK PTR(MK_STRUCT (STRUCT winsize)))

 Thunking should also be used for sysctl() but it's not (yet).

 Many ioctl()'s and sysctl()'s are not supported.

A

O Sysarch() and Others

e sysarch() is emulated. Mainly for thread local storage, etc.

e Other system calls that are missing :

— Jalil related system calls.

— Mandatory Access Control or mac(3) calls.

— kid(4) related calls.

— Capsicum(4) related calls.

— EXotic networking: e.g. sctp(4) and some socket options.
— sendfile(2), ptrace(2), and utrace(2).

— Some misc others.

(?/ Adding a New Arch to
)QEI\/IU BSD User-Mode (1/2)

e https://github.com/seanbruno/gemu-bsd-user/ (bsd-user branch)

e Arch dependent code : bsd-user/${arch}

_cpu_linit() - CPU startup initialization

_cpu_loop() - CPU exception decoding/dispatching
cpu{get, set} tis() - Get/Set TLS in CPU state
_cpu_fork() - CPU state initialization for child after fork()
{get, set} mcontext() - Get/Set machine context/ucontext
_thread_init() - First thread initialization after loading image
_thread_set_upcall() - New thread CPU state initialization

https://github.com/seanbruno/qemu-bsd-user/

(?/ Adding a New Arch to
)QEI\/IU BSD User-Mode (2/2)
set_sigtramp_args() - Set up the signal trampoline
arguments in the QEMU CPU state

get_ucontext_sigreturn() - Get the user context for
sigreturn()

setup_sigtramp() - Customize/Copy the signal
trampoline code into the target memory space.

_arch_sysarch() - sysarch() syscall emulation
get_sp_from_cpustate() - Get the stack pointer
set_second_rval() - Set the second return value

C)/ Misc Binary Image Activator

3/ Rosetta.
The most amazing software

you'll never see.

e 'Imgact_binmisc.ko' is a kernel image activator
that will invoke an user-level emulator or
Interpreter based the binary header of the file.

e binmiscctl(8) is a command-line utility that is
used to load the kernel module (if not already
loaded) and configure the interpreter/emulator
path for a set of magic bytes and mask.

e Part of FreeBSD since 10.1.

(r/ Imgact_binmisc Kernel
) Module

Xx86 Host

LARM Binary

|
a.out --arg

1 o

/usr/bin/gemu-arm a.out --arg

')/ Binmiscctl(8) Examples

 LLVM bitcode interpreter ('lli') :

binmiscctl add llvmbc --interpreter “/usr/bin/11i

--fake-arg0=#a” --magic “BC\xc0\xde” --size 4
--0ffset 0 --set-enabled

e QEMU MIPS64 emulator ('gemu-mips64’)

binmiscctl add mips64elf --interpreter
“/usr/bin/gemu-mips64” --magic
“\x7f\x45\x4c\x46\x02\x02\x01\x00[...]"” —--mask
\XEE\XFE\XFE\XEf\Xff\xff\xf£f\x00[...]"” —--size 20

e See binmiscctl(8) for additional examples.

)/ Cross Development

using QEMU

e Cross Debugging, using QEMU's gdb server :

% gemu-arm -g 4567 a.out

- Using cross gdb in second terminal :

% cross-gdb a.out

(gdb) target remote 127.1:4567

- Using lldb* in second terminal :
% 1lldb a.out
(l1ldb) gdb-remote 4567

« QEMU currently doesn't create target cores.

— It only dumps the core image of the emulator.

_') Binary Packages for my RPi ?

e Goal: Binary FreeBSD Packages for Tier 2 Architectures

e Number of Raspberry Pi's sold (as of 2/15)... > 5 Million !

e OK, my Raspberry Piis running FreeBSD. Now what?

COMPUTER HOLY WARS | {
HOLD IT RIGHT g BEARD ... THOSE
THERE, BUDDY ?ﬁﬁfgﬁggﬁ--
\ 5| EXPRESSION. ..
o, - .
2
| 3
vy T
"FreeBSD - Helping

HERE'S A NICKEL
KID. GET YOUR-
SELF A BETTER

COMPUTER.

)

YOU'RE ONE OF THOSE .,
CONDESCENDING e
COMPUTER UJSERS!

Gfay © 1995 United Feature Syndicate, Inc. (NYC)

(ﬁj Cross Building Packages

for Tier 2 Arch's

Solutions :

 |deally, cross building should be easy (e.g. 'make
crossbuild’)

— Autotools, cmake, /usr/share/mk/*, etc. are somewhat
friendly for this.

— Others not so friendly.*
 Hardware (or full emulation), distcc, and NFS

e QEMU user-mode

* See Baptiste's EuroBSD 2014 Talk for Details :
http://www.slideshare.net/eurobsdcon/baptiste-daroussin-crosscompiling-ports

(z Building Packages with

__) Large Amounts of Hardwar

e Stacks of Embedded
System Boards, distcc, NFS

— Limited Memory

— Switch Ports/Console and
Power Management ($$$)

— Not Rack Friendly

A "'r:-:'.'.'.'.'“'.ir-i-::.:' -
* I

e Target $$Ferver $$$olutions

- e.g. Calxeda/SLS ECX-1000
($20K USD)

(?/ Cross Building with
) QEMU User-Mode
 Create a jail Image (w/ 'gemu-static-user' port):

poudriere jail -c -j llarmv632 -m svn -v head -a arm armvé6 -X
poudriere jail -c¢ -J 1llmips32 -m svn -v head -a mips mips -X
poudirere jail -c -j llmips64 -m svn -v head -a mips mips64 -x
—and add something to build-

poudriere ports -c -m svn

 Mount devfs and nullfs for ports :

mount -t devfs devfs <path to jail>/dev
mount -t nullfs /usr/local/poudriere/ports/default
<path to jail>/usr/ports

 Chroot and Enjoy :

chroot /usr/local/poudriere/jails/llarmv632
uname -p
armve

(’x Using a Cross Build

__) Toolchain with QEMU

e Make a cross build toolchain (i.e. 'make xdev') and install into
jail. With imgact_binmisc it just works.

The 'cd /usr/ports/editors/vim-lite && make' Benchmark :

1400
B vim-lite build
1050
200 \ 5.2x faster than
3.8x faster thanJ Pure QEMU

S

QEMU and XDE

— ESEEEN—————.

350

0

Host Native Hybrid Emulation

 Replacing things like /bin/sh with host native versions further
benefits performance.

(j Poudriere Bulk

Using the tools you already know

* # ® A Build Jobs Results- Logs -

Queued Built Failed Skipped Ignored Remaining

24840 IR R NODEN 1237
Load Averages Swapinfo Elapsed FPkg/Hour Impulse

(116%) 17.63 18.09 18.23 2.24% 176:01:54 86 148

Build

Master
Build
Status e
Jail 1lmips32

Set
Ports Tree default
SWN svn://svn@.us-west. freebsd.org/ports/headaiag229

Jobs

Id* Elapsed
a1 0a:08:09
a2 Ba:12:36
a3 @a:54:15
a4 ea:03:21
a5 ea:16:14
26 Ba:8a: 26
a7 ga:ea:le
a8 Ba:26:01
a9 B3:35:34
18 bases stgresglad T B1:33:19
11 L/elftoaout 2@:00:082
12 ga:@3:16
13 tk B4:06:38
14 81:59:18
15 80:06:23
16 00:20:57

 Poudriere is the easiest way to get started

 Knows how to to understand binmiscctl(8)
« Knows to copy QEMU into jails

 Creates clean backup, in case of accident
e Use ZFS, save yourself some pain

(?/ Current State of

) QEMU Cross Building

e The ports cluster is building packages for arm,
mips, and mips64. Nearly 50,000 packages!

— Over 20,000 for arm, 15,000 for mips and 12,000
for mips64. (All coming to a pkg.FreeBSD.org near

you.)
e Aarch64/ARMG64 support iIs mostly there

— Have cross built a handful of packages (e.g. vim-
lite)

— Missing some threading/ _umtx_op() stuff, etc.

e QEMU- Sparc64 and PPC will run simple
static binaries.

Future

e Cross build (most) ports without QEMU. Only
use QEMU with that doesn't work (as 'plan b')

 Build more arm, mips, and mips64 packages
— Toolchain, bug fixes, etc.
o Start building Aarch64/arm64 packages

e Better cross debugger support and add target
core file generation

e Support for PPC

Credits

e Stacey Son — binmiscctl(8)/imgact_binmisc(4) and QEMU user-
mode for FreeBSD.

e Juergen Lock — QEMU ports maintainer and patch contributor.
 Ed Maste — QEMU patch contributor and cat herder.

 Peter Wemm — Sigtramp patch.

* Alexander Kabaev — QEMU patch contributor.

 Adrian Chadd — For ignoring Sean's pleading for help with
kern_imgact.c.

e Baptiste Daroussin — Poudriere and inflicting Sean with a ports
commit bit.

 Bryan Drewery — Poudriere and support.

(3 Credits Continued

 Dimitry Andric — Clang Help and Updates

 Andrew Turner — Arm GCC and Ports Patches
 Mikael Urankar — Mysql Patches

 Warner Losh — Created the native-xtools target
e lan Lapore — ARMv6 Assembly Help

 Brook Davis — Inspiration and initial guidance

e Sean Bruno — The master electrician that wired all this together and
got it working

 U.S. Taxpayers — For funding some of this work*

* Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under
contract FA8750-10-C-0237.

QEMU BSD User-Mode Src: https://github.com/seanbruno/qgemu-bsd-user/tree/bsd-user

QEMU User-Mode HowTo: https://wiki.freebsd.org/QemuUserModeHowTo
Sean's Blog: http://blog.ignoranthack.me

Email: {sbruno, sson}@FreeBSD.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

