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(ij Significant Events in the

History of Emulation

 Theory: Universal Turing
Machine (1936)

e Cross Development:
Gates/Allen's Altair 8800
Emulator (1975)

e Transparent: Apple's (or
Transitive's) Rosetta (2006)
and 68k emulator (1994)
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Intro to QEMU

e QEMU = Quick EMUlator
e Fast, flexible, open source hardware emulator

 Has played a quiet but essential role in many other
projects, including :

- KVM

QEmMuU

— VirtualBox (forked version)

— Android SDK (forked version)
* |n fact, a lot of embedded SDK's




(3 QEMU's History

o Started by Fabrice Bellard in 2003
- FFMPEG, TinyCC, TinyGL, JSLinux, etc.
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O QEMU's History

o Started by Fabrice Bellard in 2003

- FFMPEG, TCC (and OTCC), JSLinux, etc.

e Initially portable JIT translation engine for cross
architecture emulation (aka. User Mode Emulation)

« Emulation of PC hardware added
(aka. System Mode Emulation)

* Virtualization, Management API, Block Layer, etc.

e " ™ 5ﬂ‘i(V M w VirtualBox
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(j QEMU's History
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)/ QEMU User Mode Emulation

 Only CPU is emulated. [ User | User [ User | HostNaive |
MMU |/O etC are nOt Emu_ls_ltmn Em{glg_tlun Err:n_glg_mn Tools
! ! ] ] F&PI}‘-, .-’/APP\\"-, -"'XAPP\"'- =
1 L — VN /
G| |\ (; Cross |
° tSySte|rr-|t cc?ltls la"re t " Emulated |||| Emulated |||| Emulated ‘ _PJ
ranslate O host calls Syscall Syscall Syscall IDE
and/or emulated. Shims Shims Shims
2 h I I [ I |
e Can use native host tools H ; ; H
for cross development. —
CrOSS debugg|ng and [Host Kernel, Pseudo Drivers d ]
testing.

(More on this
In a minute...)



)/ QEMU User Mode Emulation
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0 System Call Argument

Translation
Target(mips) = Host(amd64)

« Endian:
- Byte Swap Args
e Word Size :
- 32-bit to 64-bit conversion
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(j System Call Argument

Translation

Target(mips) =~ Host(amd64)
 Endian:

— Byte Swap Args
 Word Size :

— 32-bit to 64-bit conversion
 ABI Differences:

- e.g. 64-bit arg passed in two
evenly alighed 32-bit registers

— Repackage 32-bit registers
Into a 64-bit argument




)/ System Call Argument

Translation
Target(mips) =~ Host(amd64)

e Pointers:

— Strings (No Problem)

- Arrays (Byte Swap, 32to64
depending on element type)

— Structures (Byte Swap,
32to64 depending on
elements types, offsets)

— Temporary buffer
management and locking




A

O Problem System Calls

 mmap() and friends

e Signals related calls

e fork(), threads and _umtx_op()
e joctl() and sysctl()
e sysarch() - ${ARCH} dependent syscalls.

e Other misc calls (most of which we simply
don't support but don't need).



‘ T&fg@t code and QEMU Target: mmap(,MAP_FIXED) » Host Mapping

use the same address
space.

 Target MAP_FIXED
mappings that conflict
with the QEMU host's
mappings are mapped

QEMU Offsets

Target Mapping

Host Mapping

Host Mapping

elsewhere but then fixed
It In the emulation.

e QEMU keeps a table of
all the host mappings.
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Target Mapping
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o

0

Signal Handling

Initialization of ;
‘ CPU Translator

Load ELF Binary
; Translated Code
Main Loop | Execution
T — —
Host SysCall
—— Shim
ispatcher: Make New
systemcal, |—® Signal Handler Translation Block
signal, etc.
thr_ - pthread
T T no

Find Translated

Block

TB Found?

e Target signals are mostly muxed with host signals.

e Target signals are queued and then dispatched out the main loop.

 Therefore, the emulation of the basic block has to finish before target
gets the signal.




rj Threads and _umtx_op()

 Threads are mapped to pthreads one-to-one.

e The undocumented umtx_op() system call supports
many operations or commands that embedded flags
Into the same field as counters/semaphores.

e.g. UMTX _OP_SEM2_ WAIT, the high order bit of
semaphore is a 'has waiters' flag. The kernel ends
up checking or flipping the wrong bit when the host
and target are different endian. Currently, we do
user level emulation of these => Slow/Ugly

Solution? (Maybe add other endian versions of these
calls.)



(j loctl() Thunking

e loctl() and sysctl() are used and abused for passing
large amounts of data in and out of the kernel.

 Thunking — A generic way using macros to convert
data flowing in and out with the ioctl() system call to

save LOC. e.g...

IOCTL (TIOCFLUSH, IOC_W, MK _PTR(TYPE INT))

IOCTL (TIOCGWINSZ, IOC R,
MK PTR(MK_STRUCT (STRUCT winsize)))

 Thunking should also be used for sysctl() but it's not (yet).

 Many ioctl()'s and sysctl()'s are not supported.



A

O Sysarch() and Others

e sysarch() is emulated. Mainly for thread local storage, etc.

e Other system calls that are missing :

— Jalil related system calls.

— Mandatory Access Control or mac(3) calls.

— kid(4) related calls.

— Capsicum(4) related calls.

— EXotic networking: e.g. sctp(4) and some socket options.
— sendfile(2), ptrace(2), and utrace(2).

— Some misc others.



(?/ Adding a New Arch to
)QEI\/IU BSD User-Mode (1/2)

e https://github.com/seanbruno/gemu-bsd-user/ (bsd-user branch)

e Arch dependent code : bsd-user/${arch}

_cpu_linit() - CPU startup initialization

_cpu_loop() - CPU exception decoding/dispatching
_cpu_{get, set} tis() - Get/Set TLS in CPU state
_cpu_fork() - CPU state initialization for child after fork()
{get, set} mcontext() - Get/Set machine context/ucontext
_thread_init() - First thread initialization after loading image
_thread_set_upcall() - New thread CPU state initialization


https://github.com/seanbruno/qemu-bsd-user/

(?/ Adding a New Arch to
)QEI\/IU BSD User-Mode (2/2)
set_sigtramp_args() - Set up the signal trampoline
arguments in the QEMU CPU state

get_ucontext_sigreturn() - Get the user context for
sigreturn()

setup_sigtramp() - Customize/Copy the signal
trampoline code into the target memory space.

_arch_sysarch() - sysarch() syscall emulation
get_sp_from_cpustate() - Get the stack pointer
set_second_rval() - Set the second return value



C )/ Misc Binary Image Activator

3/ Rosetta.
The most amazing software

you'll never see.

e 'Imgact_binmisc.ko' is a kernel image activator
that will invoke an user-level emulator or
Interpreter based the binary header of the file.

e binmiscctl(8) is a command-line utility that is
used to load the kernel module (if not already
loaded) and configure the interpreter/emulator
path for a set of magic bytes and mask.

e Part of FreeBSD since 10.1.



(r/ Imgact_binmisc Kernel
) Module

Xx86 Host

LARM Binary

|
a.out --arg

1 o

/usr/bin/gemu-arm a.out --arg




' )/ Binmiscctl(8) Examples

 LLVM bitcode interpreter ('lli') :

# binmiscctl add llvmbc --interpreter “/usr/bin/11i

--fake-arg0=#a” --magic “BC\xc0\xde” --size 4
--0ffset 0 --set-enabled

e QEMU MIPS64 emulator ('gemu-mips64’)

# binmiscctl add mips64elf --interpreter
“/usr/bin/gemu-mips64” --magic
“\x7f\x45\x4c\x46\x02\x02\x01\x00[...]"” —--mask
\XEE\XFE\XFE\XEf\Xff\xff\xf£f\x00[...]"” —--size 20

e See binmiscctl(8) for additional examples.



)/ Cross Development

using QEMU

e Cross Debugging, using QEMU's gdb server :

% gemu-arm -g 4567 a.out

- Using cross gdb in second terminal :

% cross-gdb a.out

(gdb) target remote 127.1:4567

- Using lldb* in second terminal :
% 1lldb a.out
(l1ldb) gdb-remote 4567

« QEMU currently doesn't create target cores.

— It only dumps the core image of the emulator.



_' ) Binary Packages for my RPi ?

e Goal: Binary FreeBSD Packages for Tier 2 Architectures

e Number of Raspberry Pi's sold (as of 2/15)... > 5 Million !

e OK, my Raspberry Piis running FreeBSD. Now what?

COMPUTER HOLY WARS | {
HOLD IT RIGHT g BEARD ... THOSE
THERE, BUDDY ?ﬁﬁfgﬁggﬁ--
\ 5| EXPRESSION. ..
o, - .
2
| 3
vy T
"FreeBSD - Helping

HERE'S A NICKEL
KID. GET YOUR-
SELF A BETTER

COMPUTER.

)

YOU'RE ONE OF THOSE .,
CONDESCENDING e
COMPUTER UJSERS!

Gfay © 1995 United Feature Syndicate, Inc. (NYC)




(ﬁj Cross Building Packages

for Tier 2 Arch's

Solutions :

 |deally, cross building should be easy (e.g. 'make
crossbuild’)

— Autotools, cmake, /usr/share/mk/*, etc. are somewhat
friendly for this.

— Others not so friendly.*
 Hardware (or full emulation), distcc, and NFS

e QEMU user-mode

* See Baptiste's EuroBSD 2014 Talk for Details :
http://www.slideshare.net/eurobsdcon/baptiste-daroussin-crosscompiling-ports



(z Building Packages with

__ ) Large Amounts of Hardwar

e Stacks of Embedded
System Boards, distcc, NFS

— Limited Memory

— Switch Ports/Console and
Power Management ($$$)

— Not Rack Friendly

A "'r:-:'.'.'.'.'“'.ir-i-::.:' -
* I

e Target $$Ferver $$$olutions

- e.g. Calxeda/SLS ECX-1000
($20K USD)



(?/ Cross Building with
) QEMU User-Mode
 Create a jail Image (w/ 'gemu-static-user' port):

# poudriere jail -c -j llarmv632 -m svn -v head -a arm armvé6 -X
# poudriere jail -c¢ -J 1llmips32 -m svn -v head -a mips mips -X
# poudirere jail -c -j llmips64 -m svn -v head -a mips mips64 -x
—and add something to build-

# poudriere ports -c -m svn

 Mount devfs and nullfs for ports :

# mount -t devfs devfs <path to jail>/dev
# mount -t nullfs /usr/local/poudriere/ports/default
<path to jail>/usr/ports

 Chroot and Enjoy :

# chroot /usr/local/poudriere/jails/llarmv632
# uname -p
armve



(’x Using a Cross Build

__ ) Toolchain with QEMU

e Make a cross build toolchain (i.e. 'make xdev') and install into
jail. With imgact_binmisc it just works.

The 'cd /usr/ports/editors/vim-lite && make' Benchmark :

1400
B vim-lite build
1050
200 \ 5.2x faster than
3.8x faster thanJ Pure QEMU

S

QEMU and XDE

— ESEEEN—————.

350

0

Host Native Hybrid Emulation

 Replacing things like /bin/sh with host native versions further
benefits performance.



(j Poudriere Bulk

Using the tools you already know

* # ® A Build Jobs Results- Logs -

Queued Built Failed Skipped Ignored Remaining

24840 IR R NODEN 1237
Load Averages Swapinfo Elapsed FPkg/Hour Impulse

(116%) 17.63 18.09 18.23 2.24% 176:01:54 86 148

Build

Master
Build
Status e
Jail 1lmips32

Set
Ports Tree default
SWN  svn://svn@.us-west. freebsd.org/ports/headaiag229

Jobs

Id* Elapsed
a1 0a:08:09
a2 Ba:12:36
a3 @a:54:15
a4 ea:03:21
a5 ea:16:14
26 Ba:8a: 26
a7 ga:ea:le
a8 Ba:26:01
a9 B3:35:34
18 bases stgresglad T B1:33:19
11 L/elftoaout 2@:00:082
12 ga:@3:16
13 tk B4:06:38
14 81:59:18
15 80:06:23
16 00:20:57




 Poudriere is the easiest way to get started

 Knows how to to understand binmiscctl(8)
« Knows to copy QEMU into jails

 Creates clean backup, in case of accident
e Use ZFS, save yourself some pain



(?/ Current State of

) QEMU Cross Building

e The ports cluster is building packages for arm,
mips, and mips64. Nearly 50,000 packages!

— Over 20,000 for arm, 15,000 for mips and 12,000
for mips64. (All coming to a pkg.FreeBSD.org near

you.)
e Aarch64/ARMG64 support iIs mostly there

— Have cross built a handful of packages (e.g. vim-
lite)

— Missing some threading/ _umtx_op() stuff, etc.

e QEMU- Sparc64 and PPC will run simple
static binaries.



Future

e Cross build (most) ports without QEMU. Only
use QEMU with that doesn't work (as 'plan b')

 Build more arm, mips, and mips64 packages
— Toolchain, bug fixes, etc.
o Start building Aarch64/arm64 packages

e Better cross debugger support and add target
core file generation

e Support for PPC



Credits
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(3 Credits Continued
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QEMU BSD User-Mode Src: https://github.com/seanbruno/qgemu-bsd-user/tree/bsd-user

QEMU User-Mode HowTo: https://wiki.freebsd.org/QemuUserModeHowTo
Sean's Blog: http://blog.ignoranthack.me

Email: {sbruno, sson}@FreeBSD.org
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