
An Introduction to the
Implementation of ZFS

Brought to you by

Dr. Marshall Kirk McKusick

BSD Canada Conference 2015
June 13, 2015

University of Ottawa
Ottawa, Canada

Copyright 2015 Marshall Kirk McKusick.
All Rights Reserved.



Zettabyte Filesystem Overview

• Nev er over-write an existing block

• Filesystem is always consistent

• State atomically advances at checkpoints

• Snapshots (read-only) and clones (read-
write) are cheap and plentiful

• Metadata redundancy and data checksums

• Selective data compression and
deduplication

• Pooled storage shared among filesystems

• Mirroring and single, double, and triple
parity RAIDZ

• Space management with quotas and
reservations

• Fast remote replication and backups

text ref: pp. 523-526



Structural Organization

Object Set layer

snapshot filesys space map

dir file symlink file

uberblock

object set

object set

user data

dir

• • •

• • •

zvol clone

master

master

Meta-Object Set layer

• Uberblock anchors the pool

• Meta-object-set (MOS) describes array of
filesystems, clones, snapshots, and ZVOLs

• Each MOS object references an object-set
that describes its objects

• Filesystem object sets describe an array of
files, directories, etc.

• Each filesystem object describes an array
of bytes

text ref: pp. 527-528



ZFS Block Pointer

F

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

64 56 48 40 32 24 16 8 0

asizevdev1

asizevdev2

offset2

asizevdev3

offset3

logical birth time

fill count

checksum[0]

checksum[1]

checksum[2]

checksum[3]

spare

G

G

grid

grid

grid

G

spare

psize lsizecomp

offset1

cksum

physical birth time

typelvlBDX

• Up to three levels of redundancy

• Checksum separate from data

• Birth time is the transaction-group number
in which it was allocated

• Maintains allocated, physical
(compressed), and logical sizes

text ref: pp. 529-531



ZFS Block Management

• Disk blocks are kept in a pool

• Multiple filesystems and their snapshots
are held in the pool

• Blocks from the pool are given to
filesystems on demand and reclaimed to
the pool when freed

• Space may be reserved to ensure future
availability

• Quotas may be imposed to limit the space
that may be used

text ref: pp. 542-545



ZFS Structure

snapshot

dnode dnode dnode• • • dnode

dnode dnode dnode• • • dnode

ZIL

ZIL

ZIL

ZIL

dnode

objset

filesystem

data
file

data
file

uberblock

master

dnode

master
nodenode

node

MOS layer

Object-set
layer

node
master

dnode dnode dnode dnode

groupuser
quota quota

space map

master

disk data

dnode dnode

objset

dnodednode

dsl_dataset

dnode dnode dnode dnode

dsl_dirdsl_dirdsl_dataset dsl_dataset

dnode
• • •

or clone
filesystem

objset objset

ZVOL

• MOS layer manages space and objects
using that space

• Object-set layer manages filesystems,
snapshots, clones, and ZVOLs

text ref: pp. 532-535



ZFS Checkpoint

• Collect all updates in memory

• Periodically write all changes to an unused
location to create a checkpoint

• Last step in checkpoint writes a new
uberblock

• Entire pool is always consistent

• Checkpoint affects all filesystems, clones,
snapshots, and ZVOL in the pool

• Need to log any changes between
checkpoints that need to be persistent

• Thefsyncsystem call is implemented by
forcing a log write not by doing a
checkpoint

• Recovery starts from last checkpoint, rolls
forward through log, then creates new
checkpoint

text ref: pp. 535-536



Flushing Dirty Data

3

snapshot space map

dir symlink file

uberblock

object set

object set

user data

dir

• • •

• • •

zvol clone

master

master

Meta-Object Set layer

Object Set layer

step 2

file

filesys

step 9

step 8

step 5

step 4

step 1

6

step 7

Write modified data in this order:

1) new or modified user data

2) indirect blocks to new user data

3) new dnode block

4) indirect blocks to modified dnodes

5) object-set dnode for filesystem dnodes

6) filesystem dnode to reference objset dnode

7) indirect blocks to modified meta-objects

8) MOS object-set for meta-object dnode

9) new uberblock (plus its copies)

text ref: pp. 536-538



RAIDZ

stripe 11

P0 D0

P1

P0 D0 D1 D2 P0

D0 D1 D2 P0 D0

P0 D0

P1 D5

P2

P3

D1

D2

D3

D6D4

D5 D7

D1

D2

D3

D4

D6

D7

D8

D9

D10

D11

D12

D13

P0 D0

D1 D2 D3 X P0

D0 D1 X P0

P1

P2

D0

D1

D2D4

D3

D5

D6

D7

D8

D9

D10

disk 1 disk2 disk 3 disk 4 disk 5

stripe 1

stripe 2

stripe 12

stripe 13

stripe 3

stripe 4

stripe 5

stripe 6

stripe 7

stripe 8

stripe 9

stripe 10

• Variable size stripes since each block
knows its size

• Parity sectors on disk that starts block

• N == 1, up to four blocks per parity sector.

• Blocks must be multiple of N + 1 sectors

text ref: pp. 540-541



RAIDZ Recovery

• Rebuild by traversing all MOS objects and
rebuild their blocks

Fast when pool not fully allocated as
only used blocks are rewritten

Slow when pool is full as many random
reads needed

use physical birth time to determine
blocks that need to be rebuilt

• Nev er need to recalculate and write parity

text ref: p. 541



Freeing Filesystem Blocks

• Blocks are tracked using space maps, birth
time, and deadlists

• When a block is allocated, its birth time is
set to the current transaction number

• Over time, snapshots are taken which also
reference the block

• When a file is overwritten, truncated, or
deleted, its blocks are released

• For each freed block, the kernel must
determine if a snapshot still references it

if born after most recent snapshot, it
can be freed

otherwise it is added to the filesystem’s
deadlist

text ref: pp. 543-545



Freeing Snapshot Blocks

time

block A

block B

block C

block D

[
]

]

]

next snapprev snap this snap

• Freeing ‘‘this snap’’

Iterate over ‘‘next snap’’ deadlist (blocks
A and B)

Block A born before ‘‘prev snap’’ so
added to ‘‘this snap’’ deadlist

Block B born after ‘‘prev snap’’ so must
be freed

Move deadlist of ‘‘this snap’’ to become
deadlist of ‘‘next snap’’

Remove ‘‘this snap’’ f rom list of snapshots
and directory of snapshot names

• Nev er need to make a pass over entire block-
allocation map

text ref: pp. 543-545



ZFS Strengths

• High write throughput

• Fast RAIDZ reconstruction on pools with
less than 40% utilization

• Avoids RAID "write hole"

• Blocks move between filesystems as
needed

• Integration eases administration (mount
points, exports, etc)

text ref: p. 547



ZFS Weaknesses

• Slowly written files scattered on disk

• Slow RAIDZ reconstruction on pools with
greater than 40% utilization

• Block cache must fit in the kernel’s
address space, thus works well only on
64-bit systems

• Needs under 75% utilization for good
write performance

• RAIDZ has high overhead for small block
sizes such as 4 Kbyte blocks typically
used by databases and ZVOLs.

• Blocks cached in memory are not part of
the unified memory cache so inefficient for
files and executables usingmmap or when
usingsendfile

text ref: pp. 548-549



Questions

More on ZFS:

• ‘‘The Design and Implementation of the
FreeBSD Operating System, 2nd Edition’’,
Chapter 10

• Manual pages: zfs(8), zpool(8), zdb(8)

Marshall Kirk McKusick

<mckusick@mckusick.com>

http://www.mckusick.com

text ref: pp. 548-549


