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Abstract

This paper covers recent work on pro-
viding transparent superpages support for the
FreeBSD operating system on ARM. The con-
cept of superpages mechanism is a virtual mem-
ory optimization, which allows for efficient use
of the TLB translations, effectively reducing
overhead related to the memory management.
This technique can significantly increase sys-
tem’s performance at the interface between
CPU and main memory, thus affecting its over-
all efficiency.
The primary goal of this work is to elaborate
on how the superpages functionality has been
implemented on the FreeBSD/arm and what
are the results of its application. The pa-
per presents real-life measurements and bench-
marks performed on a modern, multiprocessor
ARM platform. Actual performance achieve-
ments and areas of application are shown. Fi-
nally, the article summarizes the possibilities of
future work and further improvements.

1 Introduction

ARM technology becomes more and more
prevailing, not only in the mobile and embed-
ded space. Contemporary ARM architecture
(ARMv7 and the upcoming ARMv8) is already
on a par with the traditional PC industry stan-
dards in terms of advanced CPU features like:

• MMU (with TLB)

• Multi-level Cache

• Multi-core

• Hardware coherency

Performance and scalability of the ARM-
based machine is largely dependent of these
functionalities. Majority of the modern ARM
chips is capable of running complex software
and handle multiple demanding tasks simulta-
neously. In fact, general purpose operating sys-
tems have become the default choice for these
devices.
The operating system (kernel) is an essential
component of many modern computer systems.
The main goal of the kernel operations is to pro-
vide runtime environment for user applications
and manage available hardware resources in an
efficient and reasonable way. Memory handling
is one of the top priority kernel services. Grow-
ing requirements of the contemporary applica-
tions result in a significant memory pressure
and increasing access overhead. Performance
impact related to the memory management is
likely to be at the level of 30% up to 60% [1].
This can be a serious issue, especially for the
system that operates under heavy load.

Today’s ARM hardware is designed to im-
prove handling of contemporary memory man-
agement challenges. The key to FreeBSD suc-
cess on this architecture is a combination of so-
phisticated techniques that will allow to take
full advantage of the hardware capabilities and
hence, provide better performance in many ap-
plications. One of such techniques is transpar-
ent superpages mechanism.
Superpages mechanism is a virtual memory sys-
tem feature, whose aim is to reduce memory
access overhead by making a better use of the
CPU’s Memory Management Unit hardware
capabilities. In particular, this mechanism pro-
vides runtime enlargement of the TLB (transla-
tion cache) coverage and results in less overhead



related to memory accesses. This technique had
already been applied on i386 and amd64 archi-
tectures and brought excellent results.

FreeBSD incorporates verified and ma-
ture, high-level methods to handle super-
pages. Work presented in this paper introduces
machine-dependent portion of the superpages
support for ARMv6 and ARMv7 on the men-
tioned OS.

To summarize, in this paper the following
contributions have been made:

• Problem analysis and explanation

• Introduction to possible problem solutions

• Implementation of the presented solution

• Validation (benchmarks and measure-
ments)

• Code upstream to the mainline FreeBSD
10.0-CURRENT

The project was sponsored by Semi-
half and The FreeBSD Foundation. The
code is publicly available beginning with
FreeBSD 10.0.

2 Problem Analysis

In a typical computer system, memory is
divided into few, general levels:

• CPU cache

• DRAM (main memory)

• Non-volatile backing storage (Hard Drive,
SSD, Flash memory)

Each level in the hierarchy has significantly
greater capacity and lower cost per storage unit
but also longer access time. This kind of design
provides best compromise between speed, price
and capabilities of the contemporary electron-
ics. However, the same architecture poses a

number of challenges for the memory manage-
ment system.

User applications stored in the external,
non-volatile memory need to be copied to the
main memory so that CPU can access them.
The operating system is expected to handle all
physical memory allocations, segments transi-
tions between DRAM and external storage as
well as protection of the memory chunks be-
longing to the concurrently running jobs. Vir-
tual memory system carries these tasks with-
out any user intervention. The concept allows
to implement various, favorable memory man-
agement techniques such as on-demand paging,
copy-on-write, shared memory and other.

2.1 Virtual Memory

Processor core uses so called Virtual Ad-
dress (VA) to refer to the particular memory
location. Therefore, the set of addresses that
are ’visible’ to the CPU is often called a Vir-
tual Address Space. On the other hand there
is a real or Physical Address Space (PA) which
can incorporate all system bus agents such as
DRAM, SoC registers, I/O.

Virtual memory introduces additional
layer of translation between those spaces, ef-
fectively separating them and providing artifi-
cial private work environment for each applica-
tion. This mechanism, however, requires some
portion of hardware support to operate. Most
application processors incorporate special hard-
ware entity for managing address translations
called Memory Management Unit (MMU). Ad-
dress translation is performed with the page
granulation. Page defines VA−→PA transla-
tion for a subset of addresses within that page.
Hence, for each resident page in the VA space
exists exactly one frame in the physical mem-
ory. For the CPU access to the virtual address
to succeed MMU has to provide the valid trans-
lation to the corresponding physical frame. The
translations are stored in the main memory in
the form of virtually indexed arrays, so called
Translation Tables or Page Tables.
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To speed up the translation procedure
Memory Management Unit maintains a table
of recently used translations called Transla-
tion Lookaside Buffer (TLB).

2.1.1 TLB Translations

Access to the pages that still have their
translations cached in the TLB is performed
immediately and implies minimal overhead re-
lated to the access completion itself. Other sce-
narios result in a necessity to search for a proper
translation in the Translation Tables (presented
in the Figure 1) or, in case of failure, handling
the time consuming exception. TLB is there-
fore in the critical path of every memory access
and for that reason it is desired to be as fast
as possible. In practice, TLBs are fully asso-
ciative arrays of size limited to several dozens
of entries. In addition, operating systems usu-
ally configure TLB entries to cover the smallest
available page size so that dense page granula-
tion, thus low memory fragmentation could be
maintained. Mentioned factors form the con-
cept of TLB coverage, which can be described
as the amount of memory that can be accessed
directly, without TLB miss. Another substan-
tial TLB behavior can be observed during fre-
quent, numerous accesses to different pages in
the memory (such situation can occur when a
large set of data is being computed). Because
a lot of pages is being touched in the process,
free TLB entries become occupied fast. In or-
der to make room for subsequent translations
some entries need to be evicted. TLB evictions
are made according to the eviction algorithm
which is implementation defined. However, re-
gardless of the eviction algorithm, significant
paging traffic can cause recently used transla-
tions to be evicted even though they will need
to be restored in a moment. This phenomenon
is called TLB trashing. It is associated directly
with the TLB coverage factor and can seriously
impact system’s performance.

2.1.2 Constraints and opportunities

It is estimated that performance degra-
dation caused by the TLB misses is at 30-60%.
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Figure 1: Memory access with TLB miss.

That is at least 20%, up to 50% more than in
1980’s and 1990’s [1]. TLB miss reduction is
therefore expected to improve memory band-
width and hence overall system performance,
especially for resource-hungry processes. Re-
ducing the number of TLB misses is equivalent
to TLB coverage enhancement. Obvious solu-
tions to achieve that would be to:

◦ Enlarge the TLB itself.
However, bigger translation cache means more
logic, higher complexity and greater energy
consumption that still may result in a little im-
provement. To sustain satisfying TLB charac-
teristics with the currently available technolo-
gies, translation buffers can usually hold tens
up to few hundreds of entries.

◦ Increase the base page size.
Majority of the microprocessor architectures
support more than one page size. This gives
the opportunity to cover larger memory areas
consuming only a single entry in the TLB. How-
ever, this solution has a major drawback in the
form of increased fragmentation and hence, in-
efficient memory utilization. The application
may need to access very limited amount of
memory but placed in a few, distinct locations.
If the small pages were used as a base allocation

3



unit, less memory is reserved and more physical
frames are available for other agents. On the
other hand using superpages as a main alloca-
tion unit results in a rapid exhaustion of avail-
able memory for new allocations. In addition,
single page descriptor contains only one set of
access permissions and page attributes includ-
ing dirty and referenced bits. For that reason,
the whole dirty superpages needs to be written
back to the external storage on page-out since
there is no way to determine which fraction of
the superpage has been actually written. This
may cause serious disk traffic that can surpass
the benefit from reducing TLB misses.

◦ Allow user to choose the page size.
In that case, the user would have to be aware
of the memory layout and requirements of the
running applications. That approach could be
as much effective for some cases as it will be
ineffective for any other. In fact, this method
contradicts the idea of the virtual memory that
should be a fully transparent layer.

2.1.3 Universal Solution

Reduction of the TLB miss factor has
proven to be a complex task that requires sup-
port from both hardware and operating system
sides. OS software is expected to provide low-
latency methods for memory layout control, su-
perpage allocation policy, efficient paging and
more.

FreeBSD operating system offers the
generic and machine independent framework
for transparent superpages management. Su-
perpages mechanism is a well elaborated tech-
nology on FreeBSD, which allow for runtime
page size adjustment based on the actual needs
of the running processes. This feature is al-
ready being successfully utilized on i386 and
amd64 platforms. The observed memory per-
formance boost for those architectures is at
30%. These promising numbers encouraged
to apply superpages technique on another, re-
cently popular ARM architecture. Modern
ARM revisions (ARMv6, ARMv7 and upcom-
ing ARMv8) are capable of using various page
sizes allowing for superpages mechanism uti-
lization.

3 Principles of Operation

Virtual memory system consists of two
main components. The machine-independent
VM manages the abstract entities such as ad-
dress spaces, objects in the memory or software
representations of the physical frames. The
architecture-dependent pmap(9), on the other
hand, operates on the memory management
hardware, page tables and all low-level struc-
tures. Superpages framework affects both as-
pects of the virtual memory system. Therefore,
in order to illustrate the main principles of su-
perpages mechanism, relevant VM operations
are described. Then the specification of the
Virtual Memory System Architecture (VMSA)
introduced in ARMv6/v7-compliant processors
is provided along with the opportunities to take
advantage of the superpages technique on that
architectures.

3.1 Reservation-based Allocation

VM uses vm_page structure to represent
physical frame in the memory. In fact, the
physical space is managed on page-by-page ba-
sis through this structure [2]. In the con-
text of superpages, vm_page can be called the
base page since it usually represents the small-
est translation unit available (in most cases
4 KB page). Operating system needs to track
the state and attributes of all resident pages
in the memory. This knowledge is a neces-
sity for a pager program to maintain an effec-
tive page replacement policy and decide which
pages should be kept in the main memory and
which ought to be discarded or written back to
the external disk.

Files or any areas of anonymous memory
are represented by virtual objects. vm_object
stores the information about related vm_pages
that are currently resident in the main memory,
size of the area described by this object, pointer
to shadow objects that hold private copies of
modified pages and other information [3]. At
system boot time, kernel detects the number
of free pages in the memory and assigns them
vm_page structures (except for pages occupied
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Figure 2: Basic overview of the reservation-
based allocation.

by the kernel itself). When the processes be-
gin to execute and touch memory areas they
generate page faults since no pages from the
free list have been filled with relevant contents
and assigned to the corresponding object. This
mechanism is a part of the on-demand paging
and implies that only requested (and further
utilized) pages of any object are cached in the
main memory. Superpages technique relies on
this virtual memory feature and is in a way its
extension. When the reservation-based alloca-
tion is enabled (VM_NRESERVLEVEL set to non-
zero value) and the referenced object is of su-
perpage size or greater, VM will reserve a con-
tinuous physical area in memory for that ob-
ject. This is justified by the fact that super-
page mapping can translate a continuous range
of virtual addresses to the range of physical ad-
dresses within a single memory frame. Pages
within the created area are grouped in a pop-
ulation map. If the process that refers to the
object will keep touching subsequent pages in-
side the allocated area, the population map will
eventually get filled up. In that case, the re-
lated memory chunk will become a candidate
for promotion to a superpage. The mechanism
is briefly visualized in the Figure 2.

Not all reservations can be promoted even
though the underlying pages satisfy the conti-
nuity requirements. That is because the single
superpage translation has only one set of at-
tributes and access permissions for the entire
area covered by the mapping. Therefore, it is
obvious that all base pages within the popu-
lation map must be consistent in terms of all
settings and state for promotion to succeed. In
addition, superpages are preferred to be pro-
moted read-only unless all base pages have al-
ready been modified and are marked ’dirty’.
The intention is to avoid increased paging traf-
fic to the disk. Since there is only one modifica-
tion indicator for the whole superpage, there is
no way to determine which portion of the cor-
responding memory has been actually written.
Hence, the entire superpage area needs to be
written back to the external storage. Demotion
of the read-only superpage on write attempt is
proven to be a more effective solution [1]. Sum-
marizing, to allow for the superpage promotion,
the following requirements must be met:

• The area under the superpage has to be
continuous in both virtual and physical ad-
dress spaces

• All base mappings within the superpage
need to have identical attributes, state and
access permissions

Not all reservations can always be completed.
If the process is not using pages within the pop-
ulation map then the reservation is just hold-
ing free space for nothing. In that case VM
can evict the reserved area in favor of another
process. This proves that the superpages mech-
anism truly adapts to the current system needs
as only active pages participate in the page pro-
motion.

3.2 ARM VMSA

Virtual Memory System Architecture in-
troduced in ARMv7 is an extension of the
definition presented in ARMv6. Differences
between those revisions are not relevant to
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this work since backward compatibility with
ARMv6 has to be preserved (ARMv6 and
ARMv7 share the the same pmap(9) module).

ARMv6/v7-compliant processors use Vir-
tual Addresses to describe a memory location
in their 32-bit Virtual Address Space. If the
CPU’s Memory Management Unit is disabled,
all Virtual Addresses refer directly to the cor-
responding locations in the Physical Address
Space. However, when MMU is enabled, CPU
needs additional information about which phys-
ical frame to access when some virtual address
is used. Both, logical and physical address
spaces are divided into chunks - pages and
frames respectively. Appropriate translations
are provided in form of memory resident Trans-
lation Tables. Single entry in the translation ta-
ble can hold either invalid data that will cause
Data/Prefetch abort on access, valid transla-
tion virtual−→physical or pointer to the next
level of translation. ARMv7 (without Large
Physical Address Extension) defines two-level
translation tables.

L1 table consists of 4096 word sized en-
tries each of which can:

• Cause an abort exception

• Translate a 1 MB page to 1 MB physical
frame (section mapping)

• Point to a second level translation table

In addition, a group of 16 L1 entries can trans-
late a 16 MB chunk of virtual space using just
one, supersection mapping.
L1 translation table occupies 16 KB of memory
and needs to be aligned to that boundary.

L2 translation table incorporates 256
word sized entries that can:

• Cause an abort exception

• Provide mapping for a 4 KB page (small
page)

Similarly to L1 entries, 16 L2 descriptors can be
used to translate 64 KB large page by a single
TLB entry. L2 translation table takes 1 KB of
memory and has to be stored with the same
alignment.

Recently used translations are cached in
the unified TLB. Most of the modern ARM
processors have additional, ’shadow’ TLBs for
instructions and data. These are designed to
speed-up the translation process even more and
are fully transparent to the programmer. Usu-
ally, TLBs in ARMv6/v7 CPUs can hold tens
of entries so the momentary TLB coverage is
rather small. An exceptional situation is when
pages bigger than 4 KB are used.

3.2.1 Translation Process

When a TLB miss occurs MMU is ex-
pected to find a mapping for the referenced
page. The process of fetching translations from
page tables to TLB is called a Translation Ta-
ble Walk (TTW) and on ARM it is performed
by hardware.

For a short page descriptor format (LPAE
disabled), translation table walk logic may need
to access both L1 and L2 tables to acquire
proper mapping. TTW starts with L1 page di-
rectory whose address in the memory is passed
to the MMU via Translation Table Base Reg-
ister (TTBR0/TTBR1). First, 12 most sig-
nificant bits of the virtual address (VA[31:20])
are used as an index to the L1 translation ta-
ble (page directory). If the L1 descriptor’s en-
coding does not indicate otherwise the section
(1 MB) or supersection (16 MB) mapping is in-
serted to the TLB and translation table walk
is over. However, if L1 entry points to the L2
table then 8 subsequent bits of the virtual ad-
dress (VA[19:12]) serve as an index to the desti-
nation L2 descriptor in that table. Finally the
information from L2 entry can be used to insert
small (4 KB) or large (64 KB) mapping to the
TLB. Of course, invalid L1 or L2 descriptor for-
mat results in data or prefetch abort depending
on the access type.
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3.2.2 Page Table Entry

Both L1 and L2 page descriptors hold not
only physical address and size for the related
pages but also a set of encoded attributes that
can define access permissions, memory type,
cache mode and other. Page descriptor for-
mat is programmable to some extent, depend-
ing on enabled features and overall CPU/MMU
settings (access permissions model, type exten-
sion, etc.). In general, every aspect of any mem-
ory access is fully described by the page table
entry. This also indicates that any attempt to
reference a page in a different manner than al-
lowed will cause an exception.

4 Superpages Implementation for ARM

The paragraph elaborates on how the su-
perpages mechanism has been implemented and
operates on ARM. Main modifications to the
virtual memory system have been described
along with the explanation of the applied so-
lutions.

4.1 Superpage size selection

First step to support superpages on a new
architecture is to perform VM parameters tun-
ing. In particular, reservation-based allocation
needs to be enabled and configured according
to the chosen superpages sizes.

Machine independent layer re-
quires two parameters declared in
sys/arm/include/vmparam.h:

• VM_NRESERVLEVEL - specifies a number of
promotion levels enabled for the architec-
ture. Effectively this indicates how many
superpage sizes are used simultaneously.

• VM_LEVEL_{X}_ORDER - for each reserva-
tion level this parameter determines how
many base pages fully populate the related
reservation level.

At this stage a decision regarding supported
superpage sizes had to be made. 1 MB sec-
tion mapping has been chosen for a superpage
whereas 4 KB small mapping has remained a
base page. This approach has a twofold advan-
tage:

1. Shorter translation table walk when TLB
miss on the area covered by a section map-
ping.
In that scenario, TTW penalty will be lim-
ited to one memory access only (L1 table)
instead of two (L1 and L2 tables).

2. Better comparison with other architec-
tures.
i386 and amd64 can operate on just one
superpage size of 2/4 MB. Similar perfor-
mance impact was expected when using
complementary page sizes on ARM.

Summarizing, VM parameters have been
configured as follows:

VM_NRESERVLEVEL set to 1 - indicates one
reservation level and therefore one superpage
size in use.
VM_LEVEL_0_ORDER set to 8 - level 0 reservation
consists of 256 (1 « 8) base pages.

4.2 pmap(9) extensions

The core part of the machine dependent
portion of superpages support is focused on the
pmap module. From a high-level point of view,
VM ”informs” lower layer when the particular
reservation is fully populated. This event im-
plies a chance to promote a range of mappings
to a superpage but promotion itself still may
not succeed for various reasons. There are no
explicit directives from VM that would influ-
ence superpages management. pmap module is
therefore expected to handle:

• promotion of base pages to a superpage

• explicit superpage creation

• superpage demotion

• superpage removal
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Figure 3: Page tables and kernel structures organization.

4.2.1 Basic Concepts

pmap(9)module is responsible for manag-
ing real mappings that are recognizable by the
MMU hardware. In addition it has to control
the state of all physical maps and pass rele-
vant bits to the VM. Main module file is lo-
cated at sys/arm/arm/pmap-v6.c and is sup-
plemented by the appropriate structure defi-
nitions from sys/arm/include/pmap.h. Core
structure representing physical map is struct
pmap.

During virtual memory system initializa-
tion pmap module allocates one L1 translation
table for each fifteen user processes out of max-
imum pool of maxproc. L1 entries sharing can
be achieved by marking all L1 descriptors with
the appropriate domain ID. Architecture de-
fines 16 domains of which 15 are used for user
processes and one is reserved for the kernel.
This design can reduce KVM occupancy as each
L1 table requires 16 KB of memory which is
never freed. Each pmap structure holds pm_l1
pointer to the corresponding L1 translation ta-
ble meta-data (l1_ttable) which provides ta-
ble’s physical address to move to the TTBR on
context switch as well as other information used
to allocate and free L1 table on process creation
and exit.

Figure 3 shows the page tables organiza-
tion and their relation with the corresponding
kernel structures. L1 page table entry points

to the L2 table which collects up to 256 L2
descriptors. Each L2 entry can map 4 KB of
memory. L2 table is allocated on demand and
can be freed when unused. This technique ef-
fectively saves 1 KB of KVA per each unused
L2 table.
pmap’s L2 management is performed via pm_l2
array of type struct l2_dtable. Each of
pm_l2 fields holds enough L2 descriptors to
cover 16 MB of data. Hence, for each
16 L1 table entries, exists one pm_l2 en-
try. l2_dtable structure incorporates 16 el-
ements of type struct l2_bucket each of
which describes single L2 table in memory. In
the current pmap-v6.c implementation, both
l2_dtable and L2 translation table are allo-
cated in runtime using UMA(9) zone allocator.
l2_occupancy and l2b_occupancy track the
number of allocated buckets and L2 descriptors
accordingly. l2_bucket can be deallocated if
none of 256 L2 entries within the L2 table is in
use. Similarly, l2_dtable can be freed as soon
as all 16 l2_buckets within the structure are
deallocated.

Additional challenge for the pmap module
is to track multiple mappings of the same phys-
ical page. Different mappings can have differ-
ent states even if they point to the same phys-
ical frame. When modifying physical layout
(page-out, etc.) it is necessary to take into ac-
count wired, dirty and other attributes of all
pages related to a particular physical frame.
The described functionality is provided by us-
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ing pv_entry structures organized in chunks
and maintained for each pmap in the system.
When a new mapping is created for any pmap,
the corresponding pv_entry is allocated and
put into the PV list of the related vm_page.

Superpages support required to provide
extensions for the mentioned mechanisms and
techniques. Apart from implementing routines
for explicit superpage management the objec-
tive was to make the existing code superpages
aware.

4.2.2 Promotion to a Superpage

The decision whether to attempt promo-
tion is based on two main conditions:

• vm_reserv_level_iffullpop() - indi-
cates that physical reservation map is fully
populated

• l2b_occupancy - implies that (aligned)
virtual region of superpage size is fully
mapped using base pages

Both events will most likely occur during new
mapping insertion to the address space of the
process. Therefore the promotion attempt is
performed right after successful pmap_enter()
call.

The page promotion routine
(pmap_promote_section()) starts with
the preliminary classification of the page table
entries within the potential superpage. At
this point the decision had to be made which
pages to promote and which of them should be
excluded from the promotion. In the presented
implementation, promotion to a superpage is
discontinued for the following cases:

• VA belongs to a vectors page
Access to a page containing exception vec-
tors must never abort and should be ex-
cluded from any kind of manipulation for
safety reasons. Every abort in this case
would result in nested exception and fatal
system error.

• Page is not under PV management
With Type Extension (TEX) disabled,
page table entry has not enough room to
store all the necessary status bits. For that
reason pv_flags field from the pv_entry
structure holds the additional data includ-
ing bits relevant for the promotion to a su-
perpage.

• Mapping is within the kernel address space
On ARM, kernel pages are already mapped
using as much section mappings as possi-
ble. The mappings are then replicated in
each pmap.

Page table entry in the L2 under promotion is
also tested for reference and modification bits
as well as permission to write. Superpage is
preferred to be a read-only mapping to avoid
expensive, superpage-size transitions to a disk
on page-out. Therefore it is convenient to clear
the permission to write for a base page if it
has not been marked dirty already. All of the
mentioned tests apply to the first base page de-
scriptor in the set. This approach can reduce
overhead related to the unsuccessful promotion
attempt since it allows to quickly disregard in-
valid mappings and exit. However if the first
descriptor is suitable for the promotion then
the remaining 255 entries from the L2 table still
need to be checked

Apart from the above mentioned criteria
the area under superpage must satisfy the fol-
lowing conditions:

1. Continuity in the VA space

2. Continuity in the PA space
Physical addresses stored in the subse-
quent L2 descriptors must differ by the size
of the base page (4 KB).

3. Consistency of the pages’ attributes and
states
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When all requirements are met then it is possi-
ble to create single 1 MB section mapping for a
given area. It is important that during promo-
tion process L2 table zone is not being deal-
located. Corresponding l2_bucket is rather
stashed to speed-up the superpage demotion in
the future.

The actual page promotion can be divided
into two stages:

• pmap_pv_promote_section()
At this point pv_entry related to the first
vm_page in a superpage is moved to an-
other list of PV associated with the 1 MB
physical frame. The remaining PV entries
can be deallocated.

• pmap_map_section()
The routine constructs the final section
mapping and inserts it to the L1 page de-
scriptor. Mapping attributes, access per-
missions and cache mode are identical with
all the base pages.

Successful promotion ends with the TLB inval-
idation which flushes old translations and al-
lows MMU to put newly created superpage to
the TLB.

4.2.3 Explicit Superpage Creation

Incremental reservation map population
is not always a necessity. In case of a map-
ping insertion for the entire virtual object it
is possible to determine the object’s size and
its physical alignment. The described situation
can take place when pmap_enter_object() is
called. If the object is at least of superpage size
and VM has performed the proper alignment it
is possible to explicitly map the object using
section mappings.

pmap_enter_section() has been imple-
mented to create a direct superpage map-
pings. The routine has to perform prelimi-
nary page classification similar to the one in
pmap_promote_section(). This time however,
it is not necessary to check any of the base pages

within the potential superpage since they do
not exist yet. Bits that still need to be tested
are:

• PV management status

• L1 descriptor status
The given L1 descriptor cannot be used for
a section mapping if it is already a valid
section or it is already serving as a page
directory for a L2 table.

Direct insertion of the mapping involves a
necessity to allocate new pv_entry for a
1 MB frame. This task is performed by
pmap_pv_insert_section() which may not
succeed. In case of failure the superpage can-
not be mapped, otherwise section mapping is
created immediately.

4.2.4 Superpage Demotion and Re-
moval

When there is a need to page-out or mod-
ify one of the base pages within the superpage
it is required to destroy a corresponding sec-
tion mapping. Lack of any mapping for a mem-
ory region that is currently in use would cause
a chain of expensive vm_fault() calls. De-
motion procedure (pmap_demote_section())
is designed to overcome this issue by recreating
L2 translation table in place of the removed L1
section.

There are two possible scenarios of the su-
perpage demotion:

1. Demotion of the page created as a result
of promotion.
In that case it is possible to reuse the al-
ready allocated l2_bucket that has been
stashed after the promotion. This scenario
has got two major advantages:

• No need for any memory allocation
for L2 directory and L2 table.

• If the superpage attributes have not
changed then there is no need to mod-
ify or fill the L2 descriptors
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2. Demotion of the page that was directly in-
serted as a superpage.
This implies that there is no stashed L2
table and it needs to be allocated and cre-
ated from scratch. Any allocation failure
results in an immediate exit due to speed
restrictions. Sleeping is not an option.

The demotion routine has to check if the super-
page has exactly the same attributes and sta-
tus bits as the stashed (or newly created) L2
table entries. If not then the L2 entries need to
be recreated using current L1 descriptor. PV
entries also need to be allocated and recreated
using pv_entry linked with the 1 MB page. Fi-
nally when the L2 table is in place again, the
L1 section mapping can be fixed-up with the
proper L1 page directory entry and the corre-
sponding translation in the TLB ought to be
flushed.

The last function used for superpage dele-
tion is pmap_remove_section(). It is used
to completely unmap any given section map-
ping. Calling this function can speed-up
pmap_remove() routine if the removed area is
mapped with a superpage and the size of the
space to unmap is at least of superpage size.

4.2.5 Configuration and control

At the time when this work is written,
superpages support is disabled by default
in pmap-v6.c. It can be enabled in runtime
during system boot by setting a loader variable:

vm.pmap.sp_enabled=1

in loader.conf or it can be turned on
during compilation time by setting:

sp_enabled

variable from sys/arm/arm/pmap-v6.c to
a non-zero value.

System statistics related to the super-
pages utilization can be displayed by invoking:

sysctl vm.pmap

command in the terminal. The exemplary
output can be seen below:

vm.pmap.sp_enabled: 1
vm.pmap.section.demotions: 258
vm.pmap.section.mappings: 0
vm.pmap.section.p_failures: 301
vm.pmap.section.promotions: 1037

demotions – number of demoted superpages
mappings – explicit superpage mappings
p_failures– promotion attempts that failed
promotions– number of successful promotions

5 Results and benchmarks

The functionality has been extensively
tested using various benchmarks and tech-
niques. The performance improvement de-
pends to a large extent on the application be-
havior, usage scenarios and amount of available
memory in the system. Processes allocating
large areas of consistent memory or operating
on big sets of data will benefit more from su-
perpages than those using small, independent
chunks.

Presented measurements and benchmarks have
been performed on Marvell Armada XP (quad-
core ARMv7-compliant chip).

5.1 GUPS

The most significant results can be ob-
served using the Giga Updates Per Second
(GUPS) benchmark. GUPS measures how fre-
quently system can issue updates to randomly
generated memory locations. In particular it
measures both memory latency and bandwidth.
On multi-core ARMv7 platform, measured
CPU time usage and real time duration
dropped by 34%. Number of updates per-
formed in the same amount of time has in-
creased by 52%.
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Figure 4: GUPS results.CPU time used [s],
number of updates performed [100000/s].

5.2 LMbench

LMbench is a popular suite of system per-
formance benchmarks. It is equipped with
the memory testing program and can be used
to examine memory latency and bandwidth.
Measured memory latency has dropped by
37,85% with superpages enabled. Memory
bandwidth improvement varied depending on
the type of operation and was in the range
from 2,26% for mmap reread to 8,44% for mem-
ory write. It is worth noting that LMbench
uses STREAM benchmark to measure mem-
ory bandwidth which uses floating point arith-
metic to perform the operations on memory.
Currently FreeBSD does not yet support FPU
on ARM what had a negative impact on the
results.

Mmap
reread
[MB/s]

Bcopy
(libc)
[MB/s]

Bcopy
(hand)
[MB/s] superpages

645,4 305,4 432,3
660,0 312,4 446,9 3

Table 1: LMbench. Memory bandwidth mea-
sured on various system calls.

Mem
read

[MB/s]

Mem
write
[MB/s]

Mem
latency
[ns] superpages

681 3043 238,8
696 3300 148,4 3

Table 2: LMbench. Memory bandwidth and
latency measured on memory operations.

The results summary is shown in Tables 1 and
2. Table 3 on the other hand shows the the per-
centage improvement of the parameters with
the best test results.

Mem
write %

Rand
mem latency %

8,44 37,85

Table 3: LMbench. Percentage improvement of
the selected parameters.

5.3 Self-hosted world build

Using superpages helped to reduce self-
hosted world build when using GCC. The re-
sults are summarized in Table 4. The time
needed for building the whole set of user appli-
cations comprising to the root file system has
dropped by 1 hour 22 minutes (20% shorter).
No significant change has been noted when us-
ing CLANG.

GCC CLANG superpages
6h 36min 6h 16min
5h 14min 6h 15min 3

Table 4: Self-hosted make buildworld comple-
tion time.

5.4 Memory stress tests

Presented functionality has been also
tested in terms of overall stability and reliabil-
ity. For that purpose two popular stress bench-
marks have been used:

• forkbomb: forkbomb -M
Application can allocate entire available
memory using realloc() and access this
memory.
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• stress: stress –vm 4 –vm-bytes 400M
Benchmark imposes certain types of
compute stress on the system. In
this case 4 processes were spinning on
malloc()/free() calls, each of which
working on 400 MB of memory.

No anomalies or instabilities were detected even
during long runs.

6 Future work

The presented functionality has signifi-
cant impact on system’s performance but does
not cover all of the hardware and OS capabili-
ties. There are possible ways of improvement.

Adding support for additional 64 KB page
size will further increase the amount of created
superpages, enabling a smoother and more effi-
cient process for the promotion from 4 KB small
page to 1 MB section. In addition, a larger
number of processes will be capable of taking
advantage from superpages if the required pop-
ulation map size is smaller.

In addition, current pmap(9) implementa-
tion uses PV entries to store some information
about the mapping type and status. This im-
plies the necessity to search through PV lists
on each promotion attempt. TEX (Type Exten-
sion) support would allow to move those addi-
tional bits to the page table entry descriptors
and lead to reduction of the promotion failure
penalty.

7 Conclusions

Presented work has brought the transpar-
ent superpages support to the ARM architec-
ture on FreeBSD. The paper described virtual
memory system from both OS and hardware
points of view. System’s bottle-necks and de-
sign constrains have been carefully described.
In particular the work has elaborated on the
TLB miss penalty and its influence on the over-
all system performance.

Mechanisms implemented during the
project met their objectives and provided per-
formance gain on the interface between CPU
and memory. This statement has been sup-
ported by various tests and benchmarks per-
formed on a real ARM hardware. Test re-
sults vary between different benchmarks but
improvement can be observed in all cases and
is at 20%.

Introduced superpages support has been
committed to the official FreeBSD SVN repos-
itory and is available starting from revision
254918.
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