
Matt Ahrens

mahrens@delphix.com

http://open-zfs.org


Delphix Proprietary and Confidential

● Most data (TB) in a pool?

● Most data in an all-flash pool?

● Most number of filesystems/zvols in a pool?

● Most number of snapshots in a pool?

● Most number of pools on one system?

● Largest ARC (GB)?

● Largest L2ARC cache (TB)?



Delphix Proprietary and Confidential

What is the ZFS storage system?

● Pooled storage
○ Functionality of filesystem + volume manager in one
○ Filesystems allocate and free space from pool

● Transactional object model
○ Always consistent on disk (no FSCK, ever)
○ Universal - file, block, NFS, SMB, iSCSI, FC, …

● End-to-end data integrity
○ Detect & correct silent data corruption

● Simple administration
○ Concisely express intent
○ Scalable data structures



Delphix Proprietary and Confidential

NFS SMB Local 
files

VFS

Filesystem
(e.g. FFS, ext3)

Volume Manager
(e.g. LVM, SVM)

NFS SMB Local 
files

VFS

DMU
(Data Management Unit)

SPA
(Storage Pool Allocator)

iSCSI FC

SCSI target
(e.g. COMSTAR)

ZPL
(ZFS POSIX Layer)

ZVOL
(ZFS Volume)

File interface

Block i/f

ZFS
Block 
allocate+write, 
read, free

Atomic 
transactions 
on objects



Delphix Proprietary and Confidential

ZFS History

● 2001: development starts with 2 engineers

● 2005: ZFS source code released

● 2008: ZFS released in FreeBSD 7.0

● 2010: Oracle stops contributing to source code for ZFS

● 2010: illumos is founded as the truly open successor to 

OpenSolaris

● 2013: ZFS on (native) Linux GA

● 2013: Open-source ZFS bands together to form OpenZFS

● 2014: OpenZFS for Mac OS X launch



Delphix Proprietary and Confidential

What is OpenZFS?

OpenZFS is a community project founded by open source ZFS 
developers from multiple operating systems:

● illumos, FreeBSD, Linux, OS X

The goals of the OpenZFS project are:

● to raise awareness of the quality, utility, and availability of 
open source implementations of ZFS

● to encourage open communication about ongoing efforts 
to improve open source ZFS

● to ensure consistent reliability, functionality, and 
performance of all distributions of ZFS.



Delphix Proprietary and Confidential

OpenZFS activities

● Platform-independent mailing list
○ Developers discuss and review platform- 

independent code and architecture changes
○ Not a replacement for platform-specific mailing lists

● Simplifying the illumos development process
● Creating cross-platform test suites
● Reducing code differences between platforms
● Office Hours a.k.a Ask the Expert

http://open-zfs.org

http://www.open-zfs.org/wiki/Mailing_list
http://www.open-zfs.org/wiki/Illumos_integration_process
http://www.open-zfs.org/wiki/Reduce_code_differences
http://www.open-zfs.org/wiki/Office_hours
http://www.open-zfs.org/wiki/Office_hours
http://open-zfs.org
http://open-zfs.org


Delphix Proprietary and Confidential

Platform Diversity
stats on past 12 months (Sept 2012 - Aug 2013)

87 Commits
24 Contributors

229 Commits
19 Contributors

298 Commits
52 Contributors

379 Commits
5 Contributors



Delphix Proprietary and Confidential



Delphix Proprietary and Confidential

New in OpenZFS: Feature Flags

● How to version the on-disk format?
● Initial ZFS development model: all changes go 

through Sun
○ Linear version number
○ If support version X, must support all <X

● Feature flags enables independent development 
of on-disk features

● Independently-developed features can be later 
integrated into a common sourcebase



Delphix Proprietary and Confidential

New in OpenZFS: Smoother Write Latency
● If application wants to write more quickly than the storage 

hardware can, ZFS must delay the writes
● old: 5,600 io/s; outliers: 10 seconds



Delphix Proprietary and Confidential

New in OpenZFS: Smoother Write Latency
● old: 5,600 io/s; outliers: 10 seconds
● new: 5,900 io/s; outliers: 30 milliseconds



Delphix Proprietary and Confidential

New in OpenZFS: Smoother Write Latency

● More info from Adam Leventhal’s blog:
○ http://blog.delphix.com/ahl/2013/ zfs-

fundamentals-write-throttle
○ http://blog.delphix.com/ahl/2014/ openzfs-

write-throttle

http://blog.delphix.com/ahl/2013/zfs-fundamentals-write-throttle
http://blog.delphix.com/ahl/2013/zfs-fundamentals-write-throttle
http://blog.delphix.com/ahl/2013/zfs-fundamentals-write-throttle
http://blog.delphix.com/ahl/2014/openzfs-write-throttle
http://blog.delphix.com/ahl/2014/openzfs-write-throttle
http://blog.delphix.com/ahl/2014/openzfs-write-throttle


Delphix Proprietary and Confidential

New in OpenZFS: LZ4 compression

● Improved performance and compression ratio 
compared to previous default (lzjb)



Delphix Proprietary and Confidential

Work in progress: Resumable send/receive

● send | receive is used for remote replication
● OpenZFS has zfs send progress reporting
● If system reboots, must restart from the 

beginning
● Solution: receiver remembers what data has 

been received, sender can restart from there



Delphix Proprietary and Confidential

The future of OpenZFS: development model

● Simplify getting changes into every platform

● Platform-independent codebase

○ all platforms pull from this verbatim, goal: no diffs

○ platform-independent changes pushed here first

● FreeBSD’s and Linux’s SPL will get less gross

● Illumos will get a (also non-gross) porting layer

● Only code that can be tested on any platform in 

userland

○ Test with ztest and TestRunner (formerly STF) tests

○ Will not include ZPL (posix layer) or vdev_disk



Delphix Proprietary and Confidential

The future of OpenZFS: development model

OpenZFS

Linux FreeBSD IllumosMac OS X

Illumos

Linux FreeBSD

Mac OS X

Current

End Goal



Delphix Proprietary and Confidential

The future of OpenZFS: features

● platform-independent code repository
● hole birth time + other zfs send performance (integrated)
● filesystem & snapshot count limits (integrated)
● embedded block data (implemented)
● larger (1MB+) blocks support (implemented)
● more allocator performance (implemented)
● prefetch, ZIL, locking, UNMAP performance (Delphix)
● compressed ARC (George Wilson)
● persistent l2arc (Saso Kiselkov)
● performance on fragmented pools (George Wilson)
● resumable zfs send/recv (Delphix)
● device removal (Delphix)
● channel program for richer administration



Delphix Proprietary and Confidential

How to get involved

● If you are making a product with OpenZFS
○ let us know, put logo on website & T-shirts

● If you are an OpenZFS admin/user
○ spread the word

● If you are writing code
○ join developer@open-zfs.org mailing list
○ attend 2nd annual OpenZFS Developer Summit

■ November 10-11, 2014, San Francisco
■ talk proposals due September 8th

○ get design help or feedback on code changes
○ take a look at project ideas!

http://www.open-zfs.org/wiki/Mailing_list
http://www.open-zfs.org/wiki/OpenZFS_Developer_Summit_2014


Matt Ahrens
mahrens@delphix.com

http://open-zfs.org

http://open-zfs.org
http://open-zfs.org


Delphix Proprietary and Confidential

Features unique to OpenZFS

● Feature Flags
● libzfs_core
● CLI Usability

○ size estimates for zfs send and zfs destroy
○ vdev information in zpool list
○ zfs send progress reporting
○ arbitrary snapshot arguments to zfs snapshot

● Dataset properties
○ refcompressratio
○ clones
○ written, written@snap
○ lused, lcompressed

● TestRunner test suite



Delphix Proprietary and Confidential

Performance improvements in OpenZFS

● async filesystem and volume destruction
● single-copy ARC cache
● space allocation (spacemap) performance improvements
● smoother write latency (write throttle rewrite)
● per-type i/o queues (read, ZIL, async write, scrub)
● lz4 compression
● compressed cache devices (L2ARC)



Delphix Proprietary and Confidential

OpenZFS development process - illumos

How to develop changes:
● Large changes: review on developer@open-zfs.org
● Set up OpenIndiana-based dev environment
● Clone repo from github.com/illumos
● Make code changes
● Run a full build with nightly (runs lint)
● Test with ztest and TestRunner

○ consider if you need to add a new test case
● Check code style with cstyle tool

http://wiki.illumos.org/display/illumos/How+To+Build+illumos
https://github.com/illumos/illumos-gate/tree/master/usr/src/uts/common/fs/zfs
http://wiki.illumos.org/display/illumos/How+To+Build+illumos
https://github.com/illumos/illumos-gate/blob/master/usr/src/test/README


Delphix Proprietary and Confidential

OpenZFS development process - illumos (2)

How to submit code:
● Get your code reviewed on zfs@lists.illumos.org

○ cc: developer@open-zfs.org for platform-neutral changes
○ non-trivial changes typically must be reviewed by a ZFS 

expert (e.g. Matt Ahrens or George Wilson)
○ preferred tool for creating reviews is webrev

● Submit a “Request to Integrate” (RTI) email to 
advocates@lists.illumos.org

● Advocate will integrate (push) your code to github
○ Chris Siden is the most active ZFS advocate

mailto:zfs@lists.illumos.org
http://www.open-zfs.org/wiki/Mailing_list
http://wiki.illumos.org/display/illumos/How+To+Contribute#HowToContribute-4CodeReview
http://wiki.illumos.org/display/illumos/How+To+Contribute#HowToContribute-5SubmittingAPatch
mailto:advocates@lists.illumos.org
mailto:advocates@lists.illumos.org


Delphix Proprietary and Confidential

OpenZFS development process - FreeBSD

Code base: FreeBSD SVN tree

Porting process:
1. pulling code changes from illumos to vendor branch

● vendor/illumos/dist
2. MFV to head

● kernel: head/sys/cddl/contrib/opensolaris
● userland: head/cddl/contrib/opensolaris

3. MFC to stable after a grace period
Solaris porting layer: head(/sys)/cddl/compat/opensolaris



Delphix Proprietary and Confidential

OpenZFS development process - FreeBSD (2)

Basic rules:

● keep vendor’s directory structure
● keep as close to vendor (illumos) as possible
● mark changed or different code

Challenges:

● backward (and forward) compatibility
● FreeBSD-specific differences

○ boot loader, GEOM integration, FreeBSD jails,
VM / VFS integration



Delphix Proprietary and Confidential

OpenZFS development process - FreeBSD (3)

How to submit code:
● Platform-independent changes -> illumos
● FreeBSD-specific changes -> head branch
● Exemption: platform-independent critical 

bugfixes go direct to head + should be reported 
to illumos

● Discuss changes on the freebsd-fs@ mailing list
○ zfs-devel@ for developers



Delphix Proprietary and Confidential

OpenZFS development process - Linux

Code Base: github

● independent code base (not in mainline kernel)
● divided into spl (solaris porting layer) and zfs
● atm. mainly linux-specific activity
● behind recent illumos code base

Submitting changes:

● github pull requests / issue tracker



Delphix Proprietary and Confidential

Work in progress: Large block support

● Good ideas come from all sorts of places
● Proprietary (Oracle) ZFS has 1MB block support
● Improves performance, especially for RAID-Z 

w/4k devices
● Ideally, OpenZFS will provide compatibility with 

proprietary on-disk format


