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● Most data (TB) in a pool?

● Most data in an all-flash pool?

● Most number of filesystems/zvols in a pool?

● Most number of snapshots in a pool?

● Most number of pools on one system?

● Largest ARC (GB)?

● Largest L2ARC cache (TB)?
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What is the ZFS storage system?

● Pooled storage
○ Functionality of filesystem + volume manager in one
○ Filesystems allocate and free space from pool

● Transactional object model
○ Always consistent on disk (no FSCK, ever)
○ Universal - file, block, NFS, SMB, iSCSI, FC, …

● End-to-end data integrity
○ Detect & correct silent data corruption

● Simple administration
○ Concisely express intent
○ Scalable data structures
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ZFS History

● 2001: development starts with 2 engineers

● 2005: ZFS source code released

● 2008: ZFS released in FreeBSD 7.0

● 2010: Oracle stops contributing to source code for ZFS

● 2010: illumos is founded as the truly open successor to 

OpenSolaris

● 2013: ZFS on (native) Linux GA

● 2013: Open-source ZFS bands together to form OpenZFS

● 2014: OpenZFS for Mac OS X launch
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What is OpenZFS?

OpenZFS is a community project founded by open source ZFS 
developers from multiple operating systems:

● illumos, FreeBSD, Linux, OS X

The goals of the OpenZFS project are:

● to raise awareness of the quality, utility, and availability of 
open source implementations of ZFS

● to encourage open communication about ongoing efforts 
to improve open source ZFS

● to ensure consistent reliability, functionality, and 
performance of all distributions of ZFS.
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OpenZFS activities

● Platform-independent mailing list
○ Developers discuss and review platform- 

independent code and architecture changes
○ Not a replacement for platform-specific mailing lists

● Simplifying the illumos development process
● Creating cross-platform test suites
● Reducing code differences between platforms
● Office Hours a.k.a Ask the Expert

http://open-zfs.org

http://www.open-zfs.org/wiki/Mailing_list
http://www.open-zfs.org/wiki/Illumos_integration_process
http://www.open-zfs.org/wiki/Reduce_code_differences
http://www.open-zfs.org/wiki/Office_hours
http://www.open-zfs.org/wiki/Office_hours
http://open-zfs.org
http://open-zfs.org
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Platform Diversity
stats on past 12 months (Sept 2012 - Aug 2013)

87 Commits
24 Contributors

229 Commits
19 Contributors

298 Commits
52 Contributors

379 Commits
5 Contributors
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New in OpenZFS: Feature Flags

● How to version the on-disk format?
● Initial ZFS development model: all changes go 

through Sun
○ Linear version number
○ If support version X, must support all <X

● Feature flags enables independent development 
of on-disk features

● Independently-developed features can be later 
integrated into a common sourcebase
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New in OpenZFS: Smoother Write Latency
● If application wants to write more quickly than the storage 

hardware can, ZFS must delay the writes
● old: 5,600 io/s; outliers: 10 seconds
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New in OpenZFS: Smoother Write Latency
● old: 5,600 io/s; outliers: 10 seconds
● new: 5,900 io/s; outliers: 30 milliseconds
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New in OpenZFS: Smoother Write Latency

● More info from Adam Leventhal’s blog:
○ http://blog.delphix.com/ahl/2013/ zfs-

fundamentals-write-throttle
○ http://blog.delphix.com/ahl/2014/ openzfs-

write-throttle

http://blog.delphix.com/ahl/2013/zfs-fundamentals-write-throttle
http://blog.delphix.com/ahl/2013/zfs-fundamentals-write-throttle
http://blog.delphix.com/ahl/2013/zfs-fundamentals-write-throttle
http://blog.delphix.com/ahl/2014/openzfs-write-throttle
http://blog.delphix.com/ahl/2014/openzfs-write-throttle
http://blog.delphix.com/ahl/2014/openzfs-write-throttle
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New in OpenZFS: LZ4 compression

● Improved performance and compression ratio 
compared to previous default (lzjb)
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Work in progress: Resumable send/receive

● send | receive is used for remote replication
● OpenZFS has zfs send progress reporting
● If system reboots, must restart from the 

beginning
● Solution: receiver remembers what data has 

been received, sender can restart from there
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The future of OpenZFS: development model

● Simplify getting changes into every platform

● Platform-independent codebase

○ all platforms pull from this verbatim, goal: no diffs

○ platform-independent changes pushed here first

● FreeBSD’s and Linux’s SPL will get less gross

● Illumos will get a (also non-gross) porting layer

● Only code that can be tested on any platform in 

userland

○ Test with ztest and TestRunner (formerly STF) tests

○ Will not include ZPL (posix layer) or vdev_disk
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The future of OpenZFS: development model
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The future of OpenZFS: features

● platform-independent code repository
● hole birth time + other zfs send performance (integrated)
● filesystem & snapshot count limits (integrated)
● embedded block data (implemented)
● larger (1MB+) blocks support (implemented)
● more allocator performance (implemented)
● prefetch, ZIL, locking, UNMAP performance (Delphix)
● compressed ARC (George Wilson)
● persistent l2arc (Saso Kiselkov)
● performance on fragmented pools (George Wilson)
● resumable zfs send/recv (Delphix)
● device removal (Delphix)
● channel program for richer administration
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How to get involved

● If you are making a product with OpenZFS
○ let us know, put logo on website & T-shirts

● If you are an OpenZFS admin/user
○ spread the word

● If you are writing code
○ join developer@open-zfs.org mailing list
○ attend 2nd annual OpenZFS Developer Summit

■ November 10-11, 2014, San Francisco
■ talk proposals due September 8th

○ get design help or feedback on code changes
○ take a look at project ideas!

http://www.open-zfs.org/wiki/Mailing_list
http://www.open-zfs.org/wiki/OpenZFS_Developer_Summit_2014


Matt Ahrens
mahrens@delphix.com

http://open-zfs.org

http://open-zfs.org
http://open-zfs.org
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Features unique to OpenZFS

● Feature Flags
● libzfs_core
● CLI Usability

○ size estimates for zfs send and zfs destroy
○ vdev information in zpool list
○ zfs send progress reporting
○ arbitrary snapshot arguments to zfs snapshot

● Dataset properties
○ refcompressratio
○ clones
○ written, written@snap
○ lused, lcompressed

● TestRunner test suite
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Performance improvements in OpenZFS

● async filesystem and volume destruction
● single-copy ARC cache
● space allocation (spacemap) performance improvements
● smoother write latency (write throttle rewrite)
● per-type i/o queues (read, ZIL, async write, scrub)
● lz4 compression
● compressed cache devices (L2ARC)
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OpenZFS development process - illumos

How to develop changes:
● Large changes: review on developer@open-zfs.org
● Set up OpenIndiana-based dev environment
● Clone repo from github.com/illumos
● Make code changes
● Run a full build with nightly (runs lint)
● Test with ztest and TestRunner

○ consider if you need to add a new test case
● Check code style with cstyle tool

http://wiki.illumos.org/display/illumos/How+To+Build+illumos
https://github.com/illumos/illumos-gate/tree/master/usr/src/uts/common/fs/zfs
http://wiki.illumos.org/display/illumos/How+To+Build+illumos
https://github.com/illumos/illumos-gate/blob/master/usr/src/test/README
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OpenZFS development process - illumos (2)

How to submit code:
● Get your code reviewed on zfs@lists.illumos.org

○ cc: developer@open-zfs.org for platform-neutral changes
○ non-trivial changes typically must be reviewed by a ZFS 

expert (e.g. Matt Ahrens or George Wilson)
○ preferred tool for creating reviews is webrev

● Submit a “Request to Integrate” (RTI) email to 
advocates@lists.illumos.org

● Advocate will integrate (push) your code to github
○ Chris Siden is the most active ZFS advocate

mailto:zfs@lists.illumos.org
http://www.open-zfs.org/wiki/Mailing_list
http://wiki.illumos.org/display/illumos/How+To+Contribute#HowToContribute-4CodeReview
http://wiki.illumos.org/display/illumos/How+To+Contribute#HowToContribute-5SubmittingAPatch
mailto:advocates@lists.illumos.org
mailto:advocates@lists.illumos.org
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OpenZFS development process - FreeBSD

Code base: FreeBSD SVN tree

Porting process:
1. pulling code changes from illumos to vendor branch

● vendor/illumos/dist
2. MFV to head

● kernel: head/sys/cddl/contrib/opensolaris
● userland: head/cddl/contrib/opensolaris

3. MFC to stable after a grace period
Solaris porting layer: head(/sys)/cddl/compat/opensolaris
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OpenZFS development process - FreeBSD (2)

Basic rules:

● keep vendor’s directory structure
● keep as close to vendor (illumos) as possible
● mark changed or different code

Challenges:

● backward (and forward) compatibility
● FreeBSD-specific differences

○ boot loader, GEOM integration, FreeBSD jails,
VM / VFS integration
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OpenZFS development process - FreeBSD (3)

How to submit code:
● Platform-independent changes -> illumos
● FreeBSD-specific changes -> head branch
● Exemption: platform-independent critical 

bugfixes go direct to head + should be reported 
to illumos

● Discuss changes on the freebsd-fs@ mailing list
○ zfs-devel@ for developers
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OpenZFS development process - Linux

Code Base: github

● independent code base (not in mainline kernel)
● divided into spl (solaris porting layer) and zfs
● atm. mainly linux-specific activity
● behind recent illumos code base

Submitting changes:

● github pull requests / issue tracker
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Work in progress: Large block support

● Good ideas come from all sorts of places
● Proprietary (Oracle) ZFS has 1MB block support
● Improves performance, especially for RAID-Z 

w/4k devices
● Ideally, OpenZFS will provide compatibility with 

proprietary on-disk format


