
FreeBSD based Japanese Enterprise System

and

Unicage Development Method

BSD Consulting, Inc. Director /
ONGS Inc. CEO / FreeBSD committer

Daichi GOTO

Summary

summary
• Profile and introduction of my FreeBSD-

related works

• How about USP Lab, rapid growing enterprise
system development company

• How about Unicage development method,
USP’s original development method

• What I made for USP Lab

• FreeBSD based enterprise system and HPC

• A problem to be solved ASAP

Introduction

Introduction

• Daichi GOTO / 後藤大地 　1980～

• FreeBSD ports / src committer unionfs, japanese ports

• BSD Consulting, Inc. Director young, new company

• ONGS Inc. CEO my own company, very small company

• Enterprise system design / development /
management and maintenance, web server design /
development / management and maintenance, IT-
related news / articles / magazine and books
writing, IT-related seminar, IT-related consulting, etc

Introduction
FreeBSD-related jobs

• FreeBSD Daily Topics (ONGS works)
http://gihyo.jp/admin/clip/01/fdt

• FreeBSD books, magazines and articles
writing (ONGS works)

• FreeBSD H/W verification services and
consulting services (BSDc and ONGS
works)

• FreeBSD based enterprise platform
constructions and maintenance (BSDc and
ONGS work) etc

http://gihyo.jp/admin/clip/01/fdt
http://gihyo.jp/admin/clip/01/fdt

Introduction
FreeBSD Digital Books

• 実践 FreeBSD サーバ構築•運
用ガイド, 2012

Practical FreeBSD server building
up and management guide

ONGS works

Introduction
FreeBSD Digital Magazines

• FreeBSD Expert 2012
Digital Edition, 2012

• FreeBSD Expert 2013Q2
writing is done. coming soon
(maybe)

ONGS works

Introduction
FreeBSD-related activities

• FreeBSD src, ports committer

• Attend to BSDCan, EuroBSDCon,
DevSummit, AsiaBSDCon, VendorSummit
and writing some reports for Japanese
developers and users

• FreeBSD Seminar per month

• @daichigoto tweets FreeBSD-related news
and events information

Introduction
FreeBSD Daily Topics

Introduction
FreeBSD Seminar

Japanese enterprise IT situation

Japanese enterprise IT situation
No IT sectors

• Many Japanese companies have no own IT
sectors. They always outsource their
system development, management and
maintenance to IT vendors.

• Big companies depend on Big IT vendors.

• Middle-Small companies depend on
commercial software packages.

Japanese enterprise IT situation
IT is import-dependent industry

• Japanese software industry is an import-
dependent. Most softwares are not made in
Japan.

• Domestic IT vendors like NEC, Hitachi and
Fujitsu use imported and translated
softwares from Oracle, SAP, Microsoft and
so on.

Japanese enterprise IT situation
Sub-sub-sub...contractor structure

• Big IT vendors play as money manager

• Sub-contractors play as project manager

• Sub-sub-contractors write specifications in
excel

• Sub-sub-sub-contractors write excel
documents

• Sub-sub-sub-sub ... -sub...s write codes

• As a result : High costs and low efficiency

Japanese enterprise IT situation
as a result...

• Many enterprise system development
projects look not working well. Too may
costs, too many people, too many time, too
many unnecessary documents, too many
unnecessary source codes and too many
stress for workers. Not happy.

Universal Shell Programming
Laboratory

Universal Shell Programming Laboratory, Ltd.

• April 2005 established, Japan

• http://www.usp-lab.com/

• President is Nobuaki TOUNAKA / 當仲寛哲

• rapidly growing enterprise systems
development small-middle size company

• sales accounting system, payroll accounting
system, corporate system, CRM system,
merchandising system, enterprise system self-
manufacture etc

USP Lab
main customers

USP Lab
main customers

• ウエルシアホールディングス株式会社、全日空商事株式会
社、株式会社良品計画、株式会社ワールド、株式会社ロー
ソン、株式会社阪食、株式会社成城石井、株式会社義津
屋、株式会社東急ハンズ、株式会社ロッテリア、株式会社
キタムラ、株式会社ニュートン、株式会社日本農業新聞、
株式会社トライアルカンパニー、日本酒類販売株式会社、
株式会社タカヤナギ、株式会社三省堂書店、田中商事株式
会社 etc

Welcia Holdings, ANA FESTA, Ryohin Keikaku, World, Lowson,
Hanshoku, Seijoishii, Yoshiduya, Tokyu Hands, Lotteria, Kitamura,
Newton, Nihon Nougyo Shinbun, Trial company, Nihon Shuruihanbai,
Takanagi, Sanseido, Tanakashouji etc

USP Lab
unique development tools

• They have some very unique tools to develop any
enterprise systems in a day and age.
The commands and a shellscript.

• They have specialized commands called
“usp Tukubai” https://uec.usp-lab.com/

• “usp Tukubai” are 40~50 selective commands
survived among from several thousands of
commands they developed in past years of their
businesses.

• It looks like the 40 years old UNIX-style system
development.

https://uec.usp-lab.com
https://uec.usp-lab.com

USP Lab
their business rapidly growing

• Many business folks and developers, at first, feel
disturbed and laugh at their development style to
scorn

• However...

1. USP develops enterprise systems in very quick (a few days in
some cases) and system works very well
2. Development cost is reasonable
3. Development is very flexible
4. Approach is very easy. At last, customer’s company could do
self-manufacture (many Japanese companies have no IT sectors,
they loves outsourcing)

• And, they are growing rapidly.

USP Lab
shell programming research

• NEDO (New Energy and Industrial Technology Development
Organization) - Practical fast information treatment by
unicage development method and pipeline calculator

• Tokyo University Tamai lab - Enterprise information system
self-manufacture

• Keio University Ohiwa lab - Unicage development method
and Japanese programming

• Waseda University Yamana lab - Shellscripting fast data
treatment method on multicore processor

• Nagoya University Kawaguti lab - Emergency data treatment
system development by Unicage development method

Unicage Development Method

Unicage Development Method

• Software Development Method for
enterprise system using Unix, text file,
commands and a shellscript.

• Low Cost

• Easy to Program

• Fast Development time

• Fast Processing

Unicage Development Method
key tools: texts, commands, pipelines

• Inexpensive PC is base platform

• Data is white-space separated plain text
called “field-formated text”

• Unix text processing commands (sed, awk,
tr, grep, echo, cat, head, tail) and customized
commands called “usp Tukubai”, joined by
pipeline in a shellscript

Unicage Development Method
key tools: texts, commands, pipelines

cp Copy
find File search
sort Sort
awk Perform operations
 on items
 ：
 ：
join0 Data matching
sm2 Sum up
waku Add a border
ulock Lock control
 ：
bdate Date management

FreeBSD
Commands

usp
Tukubai
Commands

Custom
Commands

O
nl

y
10

0
C

om
m

on
 C

om
m

an
ds

Unicage Development Method
key tools: texts, commands, pipelines

 Command 1 | Command 2 | Command 3 | Command 4 | ….

Core１ Core２ Core３ Core４

Cache

Pipeline Processing

CPU

From the “Unicage Development Method Technical Overview”, 2013 USP Lab.

Unicage Development Method
scalability : multicore / many-core

 Command 1 | Command 2 | Command 3 | Command 4 | ….

Core１ Core２ Core３ Core４

Cache

Pipeline Processing : easy way to use multicore

CPU

From the “Unicage Development Method Technical Overview”, 2013 USP Lab.

Unicage Development Method
key tools: usp Tukubai

From the “Unicage Development Method Technical Overview”, 2013 USP Lab.

Database Commands
join0,1,2: Table join
gyo: Count matching records
getfirst: Get first matching row
getlast: Get last matching row
retu: Count columns
I/O Commands
cgi-name: Read data from CGI-POST
mime-read: Read MIME encoded data
Arithmetic Functions
plus: Addition
divsen: Divide by 1000

sm2: Sum a field
marume: Round a number
ratio: Find a ratio
plus: Sum all fields in a record
Formatting Commands
comma: Add commas to number
mojihame: Merge data into template
tcat: Vertically concatenate
ycat: Horizontally concatenate
map: Transpose rows/columns
yobi Get day of week
up3: Merge files on key field

• USP Labs opened license free version of
usp Tukubai “Open usp Tukubai” written in
Python

• I imported to FreeBSD devel/open-usp-
tukubai

• http://uec.usp-lab.com/ helps you

Unicage Development Method
Open usp Tukubai

http://uec.usp-lab.com
http://uec.usp-lab.com

Unicage Development Method
Fast Development / Fast Processing

• No middleware.
Shell uses kernel’s feature (systemcalls)
directory. pipe, fork, wait, open, ...

• Applications are very short (a couple dozen
lines)

• usp Tukubai commands : a command has a
feature, optimized for high performance.

Unicage Development Method
an application sample code 1

From the “Unicage Development Method Technical Overview”, 2013 USP Lab.

#!/bin/sh

join0 key=1 MASTER URE | # Join data
self 2 3 4 5 | # Select field
hsort key=1/2 | # Sort
sm2 1 2 3 4 | # Sum up
sm4 1 1 2 2 3 4 | # Intermediate total
self 1 2 4 3 | # Select Field
sm5 1 3 4 4 | # Final total
map num=1 | # Transpose
sed ‘s/A/Sales/g’ | # Text search/replace
sed ‘s/B/Profit/g’ | # Text search/replace
keta 4 6@NF-1 | # Align rows
comma 3/NF | # Add commas
cat header - | # Attach header
tocsv > result # Output to CSV
exit 0

Unicage Development Method
an application sample code 2

From the “Unicage Development Method Technical Overview”, 2013 USP Lab.

#!/bin/sh

dd bs=$CONTENT_LENGTH | cgi-name > name # Get information from web server
case “$(nameread MODE name)” in # Branch based on processing mode
SEARCH) # [Search]
 if ulock -r MST.LK; then # Shared Lock
 nameread KEY name | # Get search key
 join0 key=1 – MST | # Search for master data
 mojihame -lLABEL html # Export to HTML
 fi ;;
UPDATE) # [Update]
 if ulock -w MST.LK; then # Exclusive lock
 nameread -el “KEY|VAL” name > TRN.123 # Get key and value
 upl key=1 MST TRN.123 > MST.123 # Create update master
 ln -s MST.123 MST # Allow access with same name
 cat next_html # Output to next screen
 fi ;;
esac
exit 0

Unicage Development Method
Flexible

• Applications are very simple and easy to
learn and customize

Unicage Development Method
Data Strategy: Separate

• “To Separate is to Understand”
分ける(separate) / 分かる(understand)

The kanji “分” has 2 meanings, one is to separate,

other is to understand. It’s judicious.

• Data separated by business, separated by
organization, separated by software.

Unicage Development Method
Data Strategy: Distributed

• Data are copied to all software and distributed
to everywhere.

• No overwrite. Applications just read a file and
write into an another new file.

• Full distribution and non-overwrite system is
robust for unexpected accident. Wrong data
input, software bug or hardware bug. Developers
can inspect easily because there are just only
some text files and some little size shellscripts.

• Easy rollback

Unicage Development Method
Data Strategy: Distributed

Traditional “Sharing” (centralized) Full Sharing (distributed)

One change of spec affects everyone One change of spec doesn’t affect others

High Load / Program is Complex Low Load / Simple Program

From the “Unicage Development Method Technical Overview”, 2013 USP Lab.

Unicage Development Method
Data Flow

Data

DataData
Used

Input Script

Update/Collate Script

POS
Order Data
Master Record, etc.

Data merged
5W1H Collation
5 Layer Data Management, etc.

Output Script

Screen
Report, etc.

All three systems are created with shell scripts
Data transfer is all performed with File I/F

From the “Unicage Development Method Technical Overview”, 2013 USP Lab.

Unicage Development Method
5 Layers Data Management

Raw Data (Unsynchronized)
Data created as the information is produced
(Must not be lost; replicated and backed-up robustly)

Detail Data (Synchronized)
Raw data that has been formally imported into the
system at a particular point in time

Level 2 data is organized and summarized in 5W1H units
(Often called “Ultra-organization.” Does not depend on
the application.

Data formatted to be easily processed by the
application

Report Image Data (Excel, PDF) or Log

L e v e l 1
(Event Data)

L e v e l 2
(Confirmed Data)

L e v e l 3
(5W1H Data)

L e v e l 4
(Application Data)

L e v e l 5
(Output Data)

From the “Unicage Development Method Technical Overview”, 2013 USP Lab.

Unicage Development Method
5 Layers Data Management

Separate Items &
Create Historical Master

Phase 1

Level1
(Raw Data)

Level2

Level3

Sales Procurement Product
Master

Outlet
Master

Detail
(no summary)

Detail
(no summary) Fixed Data

Daily Weekly

By Outlet By
Area

Name Cost

Suppliers Sale
Prices

Name Days
Open

Area Store
Type

5W1H CollateCollated

Transaction
Data

Master
Data

Synchronized Import

Phase 2

First create a system for importing the raw data and collating it (Phase 1)
Build the application system (Phase 2)

Level3

Level4/5
(working data)

Other
System Unicage

I/O Console Reports I/F to Other Systems

……

From the “Unicage Development Method Technical Overview”, 2013 USP Lab.

Fixed Data

Daily Weekly

By Outlet By
Area

Unicage Development Method
Development Flow

Short Program ＋ User Focus ＋ 2-Steps Low Cost
Fast Response=

Fast Development Efficient
Communication

Accurate
Spec Design

70% Important
for Business

Short Timeframe

Design
Framework for

Business

Can be Decided
Early

＝

Few Man-Hours

Initial
Development
Obtain Real Data

Develop, Test,
Release

Can be designed
only with the original

data and output
format design

(Design Workload is
Light)

Short Timeframe

Design Useful
Features

Based on Working
Application so

Few Man-Hours

Second Pass
(Finishing)

Short Program
＋

No Dependencies
↓

Feature Extension is
Easy

Develop, Test,

30% Important
for Business

From the “Unicage Development Method Technical Overview”, 2013 USP Lab.

Unicage Development Method
Coding manners

•Script header style
•Comment style
•Variable and file naming rules
•Rules for naming temporary files
•One command per line
•Transfer data using files (not
environment variables)

•Include processing is forbidden
•File layout style
•Execution log style
•Rules for naming files

•Output execution start and end times
•Generate a semaphore file
•Keep it short
•Separate script and data in complex IF
statements

•Delete garbage files
•Don’t create versions (but make
backups)

•Multi-level calls prohibited
•Overwrite the copyright
•Understand the size of the processing
file

From the “Unicage Development Method Technical Overview”, 2013 USP Lab.

Shell Scripts are extremely flexible so we must pay close attention to proper
style when using Unicage.

Unicage Development Method
Documentation

From the “Unicage Development Method Technical Overview”, 2013 USP Lab.

1. Very Little Documentation is Required for Development
• Configuration of data and programs is fixed, so only basic
documentation is necessary.
• Required documents are as follows:

• Application I/O API specifications
• Dimensions of source data

2. Documentation for Understanding the System is Practical
•“System Purpose”, “Business Flow”, “Manuals” are needed.
•Most information needed to understand the system can be obtained by
looking at the system operation itself (examples below)
• Data configuration and relationships
• Application configuration and relationships
• Batch schedule
• Detailed specifications (written in the shell scripts)

Unicage Development Method
Based on the Unix Philosophy

• Small is Beautiful

• One program (command) should only do one thing

• Prototyping should be as fast as possible

• Portability takes precedence over efficiency

• Data is stored as plain text

• Commands are used as “levers”
 (can be combined & reused)

• Applications are written in shell script

• All programs are designed as filters (pipes)

Unicage Development Method
UEC

• http://uec.usp-lab.com/

• Web site for Unicage Engineers

• All contents are specialized for shellscript
programming

• World’s most crazy shellscript site

http://uec.usp-lab.com
http://uec.usp-lab.com

ush / BubunFS
what I made for USP

ush

ush

• ush - USP’s Shell

• ash based customized shell, removed unnecessary
features, added some new features including debug
feature, exception handling, brace expansion and
string handling

• ush is new USP’s base platform

uname -sr
FreeBSD 9.1-STABLE
ush --version
Usage : ush [-/+evx] [script [arg ...]]
 : ush --version
Version : Wed Nov 14 22:33:27 JST 2012

ush
coding robustness

• ush has no unnecessary feature to improve
coding quality

• ush has no features leading to some
security vulnerabilities

• ush has new features to improve coding
speed and reading speed

ush
error handling

ush
err handker() {
 echo error occured
}
true
false
error occured
(true | false | true)
error occured
exit

ush -e
err handker() {
 echo error occured
}

(true | false | true)
error occured

ush
verbose output for debug

cat SAMPLE.USH
#!/bin/ush -exv

err handler() {
 echo error occured
}
true
(true | false | true)

./SAMPLE.USH
#!/bin/ush -exv

err handler() {
 echo error occured
}
+5 err handler
true
+6 true
(true | false | true)
+7 true
+7 false
+7 true
+1 handler
+4 echo error occured
error occured

ush
no export, just only a few variables

ush
export
export: not found
env
LANG=ja_JP.UTF-8
PATH=/z/daichi/Library/bin:/z/daichi/bin/:/sbin:/bin:/
usr/sbin:/usr/bin:/usr/games:/usr/local/sbin:/usr/
local/bin:/z/daichi/bin
PWD=/z/dev-ush/ush/spec
TERM=xterm-256color
HOME=/z/daichi
exit

ush
log command

ush
log 2> LOG.ERROR.20130518
ls /COPYRIGHT
/COPYRIGHT
ls /COPYRIGHTs
uush
false
exit
cat LOG.ERROR.20130518
ls: /COPYRIGHTs: No such file or directory
uush: not found

ush
brace expansion

ush
echo {1..5}
1 2 3 4 5
echo {1..5}{a..d}
1a 1b 1c 1d 2a 2b 2c 2d 3a 3b 3c 3d 4a 4b 4c 4d 5a 5b 5c 5d
echo FILE.{1..3}{a,d}
FILE.1a FILE.1d FILE.2a FILE.2d FILE.3a FILE.3d
exit

ush
substring operation

ush
name=PRODUCT.NAME
echo $name
PRODUCT.NAME
echo ${name.1.7}
PRODUCT
echo ${name.9.11}
NAME
echo ${name.-4.4}
NAME
echo ${name.-4}
NAME
exit

BubunFS

BubunFS

• A new file which is a part of some file without
data copying I/O

• kldload BubunFS

•ln -s original “apartof seek length”

• e.g., 1,000,000 files from a 10GB file without
data read/writing I/O

BubunFS
feature as kernel module

BOAM /home/usp/tmpfs% kldstat
Id Refs Address Size Name
 1 16 0xffffffff80200000 150ea58 kernel
 2 1 0xffffffff8170f000 5210 BubunFS.ko
 3 1 0xffffffff81812000 390e ums.ko
 4 2 0xffffffff81816000 12074 ipfw.ko
 5 1 0xffffffff81829000 5016 ipdivert.ko
 6 1 0xffffffff8182f000 964c if_bridge.ko
 7 1 0xffffffff81839000 4ef3 bridgestp.ko
 8 1 0xffffffff8183e000 9c89 tmpfs.ko
BOAM /home/usp/tmpfs%

BubunFS is implemented as kernel module.
You can switch on/off directory at run time.

BubunFS
command sample

BOAM /home/usp/tmpfs% ls -lh
-rw-r--r-- 1 usp usp 4.3G May 7 13:33 data.bank
BOAM /home/usp/tmpfs% head -5 data.bank
0000000 20130310 101034 1000 8000
0000000 20130410 094550 2000 10000
0000000 20130430 231015 -1000 9000
0000000 20130520 042353 3000 12000
0000000 20130709 081012 4000 16000
BOAM /home/usp/tmpfs% ln -s data.bank "a 0 34"
BOAM /home/usp/tmpfs% ls -l a*
lrwxr-xr-x 1 usp usp 9 May 18 22:10 a 0 34 -> data.bank
BOAM /home/usp/tmpfs% cat a\ 0\ 34
0000000 20130310 101034 1000 8000
BOAM /home/usp/tmpfs%

BubunFS
how to implement

• BubunFS is systemcall hock magic implementation

• BubunFS implements all related systemcalls to put
the BubunFS feature into place. BubunFS kernel
module replaces some FreeBSD’s default systemcalls
with BubunFS’s systemcalls at runtime.

• We choose to use symbolic link file as a trick of
BubunFS because it’s the most fastest one.

BubunFS
use case

• One big Master file (10GB)

• Some applications want to use a part of the MASTER
file. e.x. 100 applications read the Master file | grep
> 100-new-small-files ... very slow

• BubunFS can create some million small files in
seconds

ush / BubunFS
next step

• ush2 - more debugging features, remote
control, network programming

• GattaiFS - reverse feature of BubunFS. A
file consisted by any other files.

uspBOA

usp BigData Oriented Architecture

• “usp BOA” FreeBSD based BigData
processing appliance (PC based cluster) for
USP Lab

• 1 master, 5 slaves PCs. 10GbE NIC
connected network

• 1 billion records sort : 90sec, great cost-
benefit

• I billion records search: 4sec, great cost-
benefit

uspBOA
uspBOA Architecture

boam

boas001

2 Billion 2 Billion 2 Billion 2 Billion 2 Billion

10Gbps Network

CPU: Core i7-3960X 3.30GHz
Memory: 32GB
HDD: SATA 1TB

CPU: Xeon E5-2687W 3.10GHz x2
Memory: 128GB HDD: SATA 1TB

Can scale out easily as the amount of
data grows…

boas002 boas003 boas004 boas005

Shell Script is written only on
this server

Master Server

Slave Servers
5 PCs
Store massive data
Perform actual processing

Optimum data structure is calculated

From the “Big Data...Small pricetag”, 2013 USP Lab.

uspBOA
1st BOA : failed

• 1st BOA cluster - I chose Mellanox
Technologies InfiniBand ConnectX-II for
network with OFED

• That works. Great

• But unstable. Useless

• We have no time to change kernel source
code. So we chose to buy other devices

usp BOA
2nd BOA : not enough

• 2nd BOA cluster - I chose Intel X540-T2,
and works well

• Good

• But we need more processors power, more
impact.

uspBOA
3rd BOA : success

• 3rd BOA cluster - we replaced all master
and slaves CPU to 6core/12thread Core
i7-3960X 3.30GHz and Xeon E5-2687W
3.10GHz.

• Good. Enough impact

uspBOA
uspBOA (3rd) Architecture

boam

boas001

2 Billion 2 Billion 2 Billion 2 Billion 2 Billion

10Gbps Network

CPU: Core i7-3960X 3.30GHz
Memory: 32GB
HDD: SATA 1TB

CPU: Xeon E5-2687W 3.10GHz x2
Memory: 128GB HDD: SATA 1TB

Can scale out easily as the amount of
data grows…

boas002 boas003 boas004 boas005

Shell Script is written only on
this server

Master Server

Slave Servers
5 PCs
Store massive data
Perform actual processing

Optimum data structure is calculated

From the “Big Data...Small pricetag”, 2013 USP Lab.

From the “Big Data Software Appliance Simple, High-Speed Big Data Processing using Shell Scripting and uspTukubai”, 2013 USP Lab.

#!/bin/ush -x
#Example script for summing a large data set

clust-join1 slavefile1 key=1 master URE | # Data JOIN (Bigdata)
para-self 10 2/NF-1 | # SELECT(Bigdata)
clust-sm2 slavefile2 1 2 3 4 | # SUM
sm4 1 1 2 2 3 4 | # Intermediate sum
self 1 2 4 3 5 | # SELECT
sm5 1 3 4 4 | # TOTAL
map num=1 | # Transform
sed 's/A/Sales/g' | # Text replace
sed 's/B/Profit/g' |
keta 4 6@NF-1 | # Format columns
comma 4 5 | # Insert commas
cat header -> result # Output with header
exit 0

uspBOA
an application sample

“slavefile” contains the
names of the slave servers
and the number of parallel
processes

uspBOA
Benchmarks

Process Description Speed
1. Select (para-grep) Select all records starting with the text “123” from among 1

billion records using 10 parallel processes
3 secs.

2. Sort (clust-qsort) Sort 1 billion random records in ascending order using 40
parallel processes on 5 slave servers

97 secs.

3. Sum (clust-sm2) Sum key fields in 1 billion random records using 40 parallel
processes on 5 slave servers

35 secs.

4. Mathematical Operations (clust-awk) Perform mathematical calculations between fields on 1
billion records using 40 parallel processes on 5 slave
servers

22 secs.

 (clust-lcalc) Perform precision floating-point operations 67 secs.

5. Join (clust-join1) Perform a join operation on 1 billion records using 40
parallel processes on 5 slave servers. The master server is
relatively small.

37 secs.

6. Complicated Operations (clust-shell) Distribute 1 billion records by key block units and perform
several calculations (key sumup, average, round, literal)
using 40 parallel processes on 5 slave servers

17 secs.

From the “Big Data Software Appliance Simple, High-Speed Big Data Processing using Shell Scripting and uspTukubai”, 2013 USP Lab.

uspBOA
Benchmarks

From the “Big Data...Small pricetag”, 2013 USP Lab.

Process Description Speed

1. Big Data Select
(apli-select)

Perform a matching select on 10,000
transactions (join and exclude) from among 10
billion records distributed across the slave
servers

4.5 secs.

2. Big Data Update
(Add & Change, Delete, Sum)

apli-update
apli-delete
apli-sumup

2. Big Data Update
(Add & Change, Delete, Sum)

apli-update
apli-delete
apli-sumup

5.5 secs.

3. Big Data Search
(apli-search)

Search account holder data based on Rank,
Gender, Geographical Region, Age Group,
Length of Membership and Minimum Average
Score from among 10 billion records
distributed across the slave servers

1.2 secs.

uspBOA
other examples

From the “Big Data...Small pricetag”, 2013 USP Lab.

1
Batch Processing

(Leading Credit Card
Company)

Processing of daily transaction details on 60,000,000 credit card accounts
OLD: COBOL Program running on Large Server (15hrs. 29mins)

⬇
NEW: UNICAGE Program running on 5 PCs (1hr. 56mins)

2
Complex ETL

(Leading Investment Bank)

Data Creation for DB Loading of 30,000,000 daily transaction records
 OLD: JAVA＋PostgreSQL (90 minutes)

⬇
NEW: Unicage Program running on 1 PC (91.58 seconds)

3
Complex ETL

(Large Electric Utility)

Preprocessing of 10GB of Smart Meter data
OLD: JAVA on HPUX Itanium 1.6GHz/2Core (15 hours)

⬇
 NEW: Unicage Program running on 1 PC (FreeBSD 9.1)

(4 mins 16 secs)

4
Large Data Search

(Biggest Search Engine in
Korea)

50.3 Billion Log Records from 5 years (19.2TB)
10 Types of SQL Searches translated to Unicage

Search Time: 0.227 sec - 4.763 sec

uspBOA
Bigdata case studies using Unicage

From the “Big Data...Small pricetag”, 2013 USP Lab.

(1)Replacement of Batch Processing System
(Major Credit Card Company)

(2)Complex ETL (Investment Bank)

(3)Complex ETL (Electric Power Utility)

(4) Search of Large Data Set (Korean Search Engine)

uspBOA
(1) Replacement of Batch Processing System

(Major Credit Card Company)

From the “Big Data...Small pricetag”, 2013 USP Lab.

Large data set is processed on the host. This processing will be ported to Unicage.
We receive the data that needs processing from the host, Unicage performs some
processing, then compare.

Host

Databas

Database

Large Dataset
Processing (1)

Large
Datase

Upload
Processing Flat

File

Large Dataset
Processing (30)

Large Dataset
Processing (50)

Flat
File

Flat
File

Unicage Server

Large Dataset
Processing

Flat
File

Flat
File

Flat
File

Flat
File

Flat
File

Flat
File

Receive

Compare

We compare one part of the
Large Dataset Processing

uspBOA
Processing Speed

From the “Big Data...Small pricetag”, 2013 USP Lab.

• Processing time was reduced to 1/8 of the COBOL system
(116.00/929.69=12.4%)

• Unicage was measured running on 5 x86 servers (6-core CPU x 2, 48GB RAM)
• If the number of servers is increased and processing is distributed, even faster

processing is possible.

　 COBOL Unicage
(Single x86 Server)

Unicage
(Five x86 Servers)

Processing
Time

929.69 mins.
(15 hrs. 29 mins.)

313.58 mins.
(5 hrs. 13 mins.)

116.00 mins.
(1 hr. 56 mins.)

Hardware

Host
•Initial Investment
over $1M
•Maintenance Fee also
High

Single x86 Server
•Dual 6-core CPUs
•48GB RAM
•2 x HDD (SATA 2TB)
•Initial Investment $10K
•Maintenance Fee is Low

Five x86 Servers
•Dual 6-core CPUs
•48GB RAM
•2 x HDD (SATA 2TB)
•Initial Investment $50K
•Maintenance Fee is Low

uspBOA
Development Productivity

From the “Big Data...Small pricetag”, 2013 USP Lab.

• Using COBOL
24 processes and 7 jobs
required, so development
took 3 months.

• Using Unicage
Coding:
 5 days
Testing:
 5 days
Performance Tweaking:
 3 days

• Developed by a Unicage engineer with 5 years experience in 13 days.

　 COBOL Unicage

Number of Processes ７ Jobs & 2４Processes 11 Shell Scripts

Development Time 3 Months 13 days

Lines of Code 3,645 981

uspBOA
(2) Complex ETL (Investment Bank)

From the “Big Data...Small pricetag”, 2013 USP Lab.

• Using the Unicage development method, we will perform
reformatting of data so that it is in a format that can be loaded into
the transaction storage database.

• We will then compare processing time.

Parent

Child 1

Grandchild 1-1

Grandchild 1−2

Child 2

Grandchild 2−1

Parent

Child 1

Child 2

Parent

Child 1

Child 2

A

B

C

A Parent Child1 Grandchild1−1

A Parent Child1 Grandchild1−2

A Parent Child1 Grandchild2−1

B Parent Child1

B Parent Child2

C Parent Child1 Child2

Transaction Log Record Types (approx. 100) Data to be Loaded

Hierarchical Multi-Layout

Layout resolves the Parent/Child/
Grandchild

relationships

Execution Speed using Java+
PostgreSQL is about 90 minutes

uspBOA
Processing Speed

From the “Big Data...Small pricetag”, 2013 USP Lab.

Application Details Records
Processed

Lines of
CodePROCESS-MASTER Top Shell 29

PROCESS-001 Exception Processing 1 8,327 8

PROCESS-002 Exception Processing 2 117,838 9

PROCESS-003 Exception Processing 3 81 11

PROCESS-004 Exception Processing 4 5,028 19

PROCESS-005 Exception Processing 5 332 14

PROCESS-006 Normal Processing 27,614,260 6

29,015,393
(4.36 GB) 96

Execution Speed:
Real:
 91.58 sec
User:
 132.85 sec
Sys:
 22.53 sec

Computer Desktop PC
(Intel Core i7 processor, 16GB RAM)

Operating System FreeBSD 9.0 Release#0

Shell Commands USP Unicage Enterprise Version

Development/Testing Environment

uspBOA
(3) Complex ETL (Electric Power Utility)

From the “Big Data...Small pricetag”, 2013 USP Lab.

UNIX Server

Unicage Server

Code Conversion
Processing
(Unicage)

Character set conversion of host data (from native to SJIS)

Receive Compare

Code Conversion
Processing
（Java）

Automatic Meter
Reading Terminal

Meter Data
(native)

Meter Data
（SJIS）

The legacy system converts the
character set from native to SJIS.
We ported this process to Unicage.
We confirmed the input and
output files are the same and
calculated the difference in
processing speed using Unicage.

Mainframe

Meter Data Meter Data
(native)

Meter Data
（SJIS）

Meter Data
(native)

EBCDIK
Zone
Pack
Binary
Kanji Code

uspBOA
Processing Speed

From the “Big Data...Small pricetag”, 2013 USP Lab.

We tested on 2GB, 5GB and 10GB data sets.

We used the following server environment:

•Java: HP-UX, Itanium 1.60GHz 2core, 4GB
•Unicage: FreeBSD, Core i7 4core, 16GB, SATA (2TB)

　Data
Amount

2GB
7,240,555 records

5GB
18,095,303 records

10GB
36,178,437 records

Java 3hrs 7mins 53secs 7hrs 30mins 15 hrs

Unicage 43.411secs 1 min 49.085secs 4mins 16.906secs

Difference
11273/43.411=
259x faster

27000/109.085=
247x faster

54000/256.906=
210x faster

uspBOA
(4) Search of Large Data Set (Korean Search Engine)

From the “Big Data...Small pricetag”, 2013 USP Lab.

Analysis of search logs from a major search engine site
Analysis based on text search and user IP address search

【Configuration】 Expected data: 10.8GB/day x 365 days x 5 years = 19.2TB
 (27,610,000 records) (50 Billion

Front-end Terminals

WebServer (distribution)

・・・ Unicage Server Cluster
 0.5TB x 40 servers

Shell Script
+

Pompa

Scale Out

uspBOA
SQL and Shell Programming

From the “Big Data...Small pricetag”, 2013 USP Lab.

B3:
Count number of records for each C_QUERY_NOSP, C_USER
B4:
Count number of records for each C_USER, output counts over 30
B5:
Output C_QUERY_NOSP list using conditions C_DATE and C_USER
B6:
Count number of records for each C_REQ_FRM, output row counts in

descending order
B7:
Count number of records for each C_CONNECTION
B8:
Count number of records for each C_QUERY_NOSP using conditions

C_DATE and C_CONNECTION
B9:
Count number of records for each C_QUERY_NOSP with C_CONNECTION‘X’

over 500
B10:
 Count number of records for each C_QUERY_NOSP with unique C-

SESSION1 over 3
B11:
 Count number of records for each C_QUERY_NOSP that don’t occur

on a specific date
B12:
 Count number of records with C_IP of 3 or higher and count number

of records with unique C_QUERY_NOSP

uspBOA
SQL and Shell Programming

From the “Big Data...Small pricetag”, 2013 USP Lab.

Shows equivalent shell script for each SQL code

B3 【SQL】:
select C_QUERY_NOSP, C_USER, count(*)
 from SEARCHLOG
 where C_DATE='2006-09-18‘

B3 【USP】:
cat ${lv3d}/L3.DAY |
awk '$4=="20060918" |
self 23 16 |
dsort key=1/2 |

B9 【SQL】:
select A.q1, A.cnt1 as a1, B.cnt2 as

a2 from
(select C_QUERY_NOSP as q1, count(*)

as cnt1
 from searchlog
 where C_DATE='2006-09-18' and

C_CONNECTION='X'
 group by C_QUERY_NOSP having

B9 【USP】:
cat ${lv3d}/L3.DAY |
awk '$4=="20060918"&&$14!="X"' |
self 23 |
dsort key=1 |
count 1 1 > $tmp-b
cat ${lv3d}/L3.DAY |
awk '$4=="2006-09-18"&&$14=="X"' |
self 23 |
dsort key=1 |
count 1 1 |

BSDc for Enterprise

BSDc for Enterprise
BSD Consulting, Inc.

• Established 1st June, 2012

• wholly owned subsidiary of USP Lab.

• short name, BSDc

• President: Nobuaki TOUNAKA / 當仲寛哲

Director: Daichi GOTO / 後藤大地

BSDc for Enterprise
2 years ago

• President Tounaka have involved me as a
FreeBSD consultant 2 years ago.

• USP found that FreeBSD is better choice
for them as base platform.
Until this time, they used CentOS and
bash. I push them FreeBSD and ash.

• I developed the customized shell (ush) and
specialized filesystem for their business
(BubunFS).

BSDc for Enterprise
customers needed us

• a certain USP’s customer hesitated to take
FreeBSD as their base platform.

• They said, because of the lack of the company
for support of FreeBSD, they could not choose
FreeBSD.

• Exactly, we lacked FreeBSD support company.

• So, we established “BSD Consulting, Inc.” for
our business.

• FreeBSD Supporting and Consulting
services

• Providing FreeBSD Information in Japanese

• FreeBSD H/W verification service

• FreeBSD Seminar services

BSDc for Enterprise
FreeBSD information in Japanese

• Most japanese can not understand English.

• My English is lesser, but others are terrible.

• Folks attended AsiaBSDCon 2013 already
know that, uh?

• Release note, Errata, Security Advisory in
Japanese are valuable contents.

BSDc for Enterprise
H/W verification

• Japanese domestic server H/W vendors
lack of FreeBSD support, because of the
lack of FreeBSD support company

• If H/W vendors say “our products work
with FreeBSD 9.1-RELEASE”, that’s good
for all FreeBSD users and customers

BSDc for Enterprise
NEC Express5800 Verification

• They changed their on-bard NIC chipset
from Intel to Broadcom because of the
cost a year ago

• They choose the new MegaRAID card that
does not work with mfi

• They needed some patches

BSDc for Enterprise
NEC Express5800 Verification

• FreeBSD didn’t work on NEC’s new
Express5800. Their customer got angry.

• BSDc and NEC have a contract about
FreeBSD support and H/W verification.

• some Express5800 series will work with
FreeBSD.

• patches, documents and information will be
open on BSDc website.

BSDc for Enterprise
NPO for enterprise

• We started to establish two organizations
at June 2012. One is BSDc, other is NPO
for *BSD “BSD Research (BSDr)”

• chairman : Sato-san (aka hrs)

• will be established at Summer, 2013

• core business : AsiaBSDCon, BSD
Certification, *BSD documents translation

BSDc for Enterprise
BSDc and BSDr

• We thought that we need a fair and
impartial certified organization to promote
FreeBSD to enterprises company

• BSD Certification / BSD Certification
Group is qualify

• NPO cooperates with BSD CG, and
provides BSD Certification in Japanese

BSDc for Enterprise
translation ongoing

• Japanese Documents are critical for all
Japanese FreeBSD users

• NPO for *BSD are trying to translate
important FreeBSD relative documents into
Japanese

A problem to be solved ASAP

A problem to be solved ASAP
InfiniBand driver and OFED

• HPC needs InfiniBand driver. 10GbE works
fine. But InifiniBand transports 3.2 times
faster than 10GbE.

• In fact, we are constructing new uspBOA
with Linux, because of InfiniBand.

• We have tried to improve OFED on
FreeBSD last 2~3 months

• In the end, it failed. At last we realized that
we were implementing all Linux NAPI in
the FreeBSD kernel. It looks like a wrong
approach.

• We are considering next approach. If you
have any ideas, please contact me.

A problem to be solved ASAP
InfiniBand driver and OFED

A problem to be solved ASAP
InfiniBand driver and OFED

• We need InfiniBand drivers. The lack of
InfiniBand drivers give RadHat/CentOS some
advantage as common HPC platform.

• Should we contact to Mellanox Technologies?

• Should we suggest to FreeBSD Foundation to
develop latest OFED subsystem?

• Current big concern. Big business showstopper

Question?

