A NetBSD-based Radar
in a Rocket Launching Center

Andre Oliveira <andre@chocolatelabz.com>
Chocolate Software Laboratories
BSDCan 2013, University of Ottawa, Canada
Agenda

- Context
- Problem
- NetBSD for the win
- ST2223 Telemeasurements System - A NetBSD-based Radar
Introducing

- C/C++ Unix Guy
- Software Engineering at Chocolate Software Laboratories (Brasil)
- Fail: machine-learning recommendation as a service
- Now
 - R&D services for software development projects
 - Training services: C/C++ development for Unix, Qt
- Universities: USP, PUC-SP. Companies: Schibsted ASA, Orbisat/Embraer.
Context

Aerospace Landscape in Brasil

Alcântara Launching Center
Context

Aerospace Landscape in Brasil - Quick history

- 1961 - Government starts Brazilian space program
 - Military control
- 1994 - Government creates Brazilian Space Agency
 - Civilian control
- Focus on development of local space-related technology
 - Vehicles launching
 - Launch sites
 - Satellite manufacturing
Context

Aerospace Landscape in Brasil - Globally

- Rocket launching technology raise issues
 - Can be applied for civilian (space) and military (artillery) purposes
- INPE (National Space Research Institute) and NASA
 - Exchange data and expertise in civilian-related applications
- US and Brasil were once best friends (cold war)
 - Now closest relations are with China, Ukraine and Russia
- AEB (Brazilian Space Agency) 2013 budget: US$ 275 million
- NASA 2012 budget: US$ 17.8 billion
Context
Aerospace Landscape in Brasil - Infrastructure in summary

- Launching sites
 - Alcantara Launch Center - CLA
 - Barreira do Inferno Launch Center - CLBI
- Launching vehicles
 - VLS - Satellite Launch Vehicle
 - Variety of sounding rockets
 - Others in development (VLM - Microsatellite Launch Vehicle)
- Satellites
 - Several, many developed with China
Context

Alcântara Launching Center - Mission

CLA mission: launching of scientific and technological rockets.

- Strategic features
- Infrastructure
The closest launching base to the Equator
- The closest launching base to the Equator
- Up to 30% less fuel
Near the sea (enable launching of huge rockets)
Easy access by sea, land and air
Context
Alcântara Launching Center - Infrastructure

- Facilities
 - Propellants preparation
 - Payload preparation (scientific-technological experiments or satellites)
- Universal launch tower
- Mobile integration tower
- Control center
- Meteorological radars and facilities
- Telemeasurements & Tracking radars
Context

Alcântara Launching Center - Control Base & Raposa Site

source: Brasil's Ministry of Defence

@BSDCan
Context

Alcântara Launching Center - Control Center

source: www.defesanet.com.br

@BSDCan
Context

Alcântara Launching Center - Launchpad & Vehicles

source: www.defesanet.com.br

@BSDCan
Context
Alcântara Launching Center - Radars

- Tracking Radars
 - Atlas-Thomson Radar (FR) - Precision sensor (azimuth/elevation)
 - Adour-Thomson Radar (FR) - Approach sensor (distance)
- Telemeasurements Stations
 - Thomson's Telemeasurements - Main station
 - Omnisys' ST2223 - Redundant station (our NetBSD-based boy)
- Telemeasurements what for?
 - Not for tracking purposes
 - Still needs to track target's signal automatically
 - Payload's data acquisition, transmission, recording and processing
 - More useful for launching or suborbital missions
Context

Alcântara Launching Center - Misc

- 30 years old (01/03/1983)
- First launch: December 1989
- 20 missions plus
- 457 rockets launched up to today (373 brazilian)
- 2012 base had 9 missions (a mark)
- BSD came just in time!
Context

Alcântara Launching Center - ST2223 Telemeasurements Station

source: www.omnisys.com.br
Agenda

- **Context**
 - Aerospace Landscape in Brasil
 - Alcântara Launching Center

- **Problem**
 - NetBSD for the win
 - ST2223 Telemeasurements System - A NetBSD-based Radar
Problem
Software Engineering at Omnisys
Problem
Software Engineering at Omnisys - History & Projects

- Late 1997 - Omnisys Engineering founded
- Late 2005 - 1st programmer of Software Dev. Group (SDG) hired
- Early 2006 - Thales Group buy Omnisys
- Early 2006 - 1st intern hired
- Early 2007 - 6 people at SDG

- Thomson-Atlas (new radar display/control) - CLA
- Thomson-Adour (new radar display/control) - CLA
- ST2223 Telemeasurements Station - CLA
- Optical Tracking System - CLA
Problem
Software Engineering at Omnisys - CLA special requirements

Launching centers are special customers

- Isolated by 3000 km distance
- Expensive operation to deploy

Delivery Process

- Extensive testing (simulation) at our site
- Extensive testing (simulation) at customer site
- Deploy when sure
- Real targets tests (put base in operation)
- Deploy is for real, almost no rollback (during an operation)
Problem

Software Engineering at Omnisys - Implications

Home QA

- Minimum failure
- Simulate everything
- Predictability
- Reproducibility
- Maximum Control
Problem
Software Engineering at Omnisys - Challenges

Projects

- Build ST2223
- Atlas/Adour new Displays
- Detail Optical Tracking System

Internally

- Build a "jack of all trades" team
- Aerospace-level QA
- Build processes and infrastructure
Agenda

- Context
 - Aerospace Landscape in Brasil
 - Alcântara Launching Center

- Problem

- NetBSD for the win

- ST2223 Telemeasurements System - A NetBSD-based Radar
NetBSD for the win
NetBSD for the win
Infrastructure & Development Support Tools

- Unix development workstations
- Server
 - Backup
 - Network Services
 - Development
- Surrounded by supporting tools
 - Oscilloscopes
 - Signal Generators
 - Electronic prototypes
NetBSD for the win

Workstations

- As any other BSD
 - C/C++ Developer friendly
 - bmake, lex/yacc, awk/sed
 - Cross-compiling toolchain
 - mount_nullfs(8) (!)
 - pkgsrc
 - gmake, vim, kdevelpop, lisp, tcl, python, perl
 - sqlite, postrgresql, num-py, gnu-R
 - Qt (almost fully compatible)
 - Qwt
NetBSD for the win

Development Server

- Classic services natively:
 - FTP, HTTP, SMTP, DNS, NFS
- Good storage stack
 - needed for huge simulation datasets
- pkgsrc
- Development
 - No much memory or CPU
 - More than /home
 - No jail(8)
 - Let's try chroot(8)
NetBSD for the win
Development Server - chroot(8) environments

```
export mnt_prefix=/mnt
export dev_path=/dev/vnd0
export img_path=/omnisys/software/netbsd/netbsd-2.1/i386cd.iso
export mnt_path=$(mktemp -d {mnt_prefix}/*/0-XXX)
export dst_path=/omnisys/machs/temp.zumbi.$(whoami)

vnconfig -v ${dev_path} ${img_path}
mount -t cd9660 ${dev_path}d ${mnt_path}

for fset in ./text.tgz 
  ./misc.tgz 
  ./man.tgz 
  ./kern GENERIC.tgz 
  ./games.tgz 
  ./etc.tgz 
  ./comp.tgz 
  ./base .tgz; do
  progress -zf ${mnt_path}/i386/binary/sets/${fset} tar -C ${dst_path} -xpf -;
  done;
  cd ${dst_path}/dev
  ./MAKEDEV all
  ...
```
NetBSD for the win
Development Server - chroot(8) environments

- Simple
- Customizable
- Vagrant-like (??)
NetBSD for the win

Simulation

- Simulation Machine <-> Ethernet -> Target System Machine
- Components
 - simulation-producer (NetBSD)
 - simulation-proxy (Linux or NetBSD)
 - simulation-dev (Linux or NetBSD)
- Stable
- Robust
- Low-latency
NetBSD for the win
Product Governance and Engineering Processes

- Learn by doing
- Horizontality

- BSDs opensource KDB Project Management
 - Working with hats
 - Communication
 - engsoft-releng@, engsoft-misc@, engsoft-doc@, engsoft-project_name@, engsoft-commits@
 - Product Roadmap

- BSDs opensource KDB Engineering Processes and Product Governance
 - CURRENT->RELEASE->STABLE Branch model
NetBSD for the win

QA

- "Broken Build Hall of Shame"
- Regress tests
- Thanks to you Guys!
NetBSD for the win

Team

Left to right: Raimundo Santos, Vini (our guest), Silas Silva, Flavio Copola, Rodrigo Schimidt, Fabiano Lopes (missing)

source: Personal archive

@BSDCan
Agenda

- Context
 - Aerospace Landscape in Brasil
 - Alcântara Launching Center

- Problem
- NetBSD for the win
- ST2223 Telemeasurements System - A NetBSD-based Radar
ST2223 Telemeasurements System
A NetBSD-based Radar
ST2223 Telemeasurements System

Mission

- Ensure communication between rocket payload and the launching base

Features

- S-Band
- Frequency: 2200 MHz and 2300 MHz
- 4.5m Antenna
- 4 operation modes:
 - Manual, Nominative (or designate), Positioning, Automatic
- No emission (depends on payload's transmitter)
- Fixed target antenna
- Local and Remote HMIs
ST2223 Telemeasurements System

Internals (as any closed loop system):

- Receiver (sensor)
- Servo (controller)
- Other interfaces: Clock source, DO control, etc.

How we fit NetBSD?

- HMIs
- "Data-Switch"
ST2223 Telemeasurements System

Data-Switch

- Could be a hard real-time - QNX
- For control reasons - shall be a BSD
- Shall you take aggressively to latency
- Avoids kernel work - Ethernet or RS232 for I/O
- Modbus (libmodbus)
- NetBSD 2.1
- Proprietary Application
 - No buffers, no queues, no prioritization
 - Combine data with Universal clock source
 - Data exchange with other systems of the Base
ST2223 Telemeasurements System

HMI

- SCADA
- Backend
 - C code
 - I/O
 - Data Demux
 - Data Recording (new process)
- Interface Frontend/Backend - publish/subscribe
- Frontend - GUI
 - C++, Qt, Qwt
 - Widgets
ST2223 Telemeasurements System

HMI - Widgets
ST2223 Telemeasurements System

NetBSD

- NetBSD 2.1
- Custom install
- Custom build on top of build.sh
- kqueue(2)
Makefile

build:
 chroot ${CHROOT} /usr/src/build.sh -U -u -x tools kernel=GENERIC build release
...

installbin:
 mkdir -p ${CHROOT}/usr/src/releasedir/i386/omnisys/pkg
 cp ${DESTDIR}/${QT} ${CHROOT}/usr/src/releasedir/i386/omnisys/${QT}
 cp ${DESTDIR}/${QWT} ${CHROOT}/usr/src/releasedir/i386/omnisys/${QWT}
 cp ${LOCAL_IHMTEL} ${CHROOT}/usr/src/releasedir/i386/omnisys/local-ihmtelm.tgz
 cp ${REMOTE_IHMTEL} ${CHROOT}/usr/src/releasedir/i386/omnisys/remote-ihmtelm.tgz
...

make-iso-image:
 TOOLDIR=/usr/src/tooldir.NetBSD-3.1-i386 DESTDIR=/usr/src/destdir.i38 RELEASEDIR=/usr/src/releasedir \
 chroot ${CHROOT} /bin/sh <<EOF
 cd /usr/src/etc;
 make iso-image;
EOF
ST2223 Telemeasurements System
Patching NetBSD build

patch to list.change
list.patch:
cat >> ${CHROOT}/usr/src/distrib/i386/floppies/ramdisk-big/$@ <<EOF
omnisys installer
COPY ${NETBSDSRCDIR}/distrib/utils/omnisys/omni-inst.sh omni-inst.sh 555
EOF
...
patch to dotprofile
dotprofile.patch:
ed ${CHROOT}/usr/src/distrib/i386/floppies/common/dot.profile <<EOF
/
 sysinst
/d
-
/a

 # sysinst

 /omni-inst.sh
.

wq
EOF
ST2223 Telemeasurements System
Patching NetBSD build

```sh
# omni-inst.sh essence
main() {
    disk_part wd0
    slice_part
    format_slices
    mount_partitions
    untar_sets
    boot_stuff
    # devices, fstab, rc_conf, x11
    final_config
    net_config
    app_install
    create_users
    umount_filesystems
    message "x - reiniciando";
    exec reboot
}
```
• Atlas/Adour Display
• **Optical Tracking System**
• BSD in aerospace
 - Coherence, Self-contained, Easy to modify
 - Just fast!
 - Open KDB
 - Architecture references
 - Design patterns (Unix the only true repository)
 - Implementation reference
 - Project Management, Product Governance, Engineering Processes
Agenda

- Context
 - Aerospace Landscape in Brasil
 - Alcântara Launching Center
- Problem
- NetBSD for the win
- ST2223 Telemeasurements System—A NetBSD-based Radar
Questions?
Thank you!

g+ gplus.to/andreluizdoliveira
twitter @andreldoliveira
www andreldoliveira.org
github bitbucket.org/chocolatelandz
Chocolate Software Laboratories