
Crowdsourcing security
Lessons in open code and bug bounties

Colin Percival
cperciva@tarsnap.com

May 18, 2012

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Who am I?

FreeBSD Security Officer since 2005.

Responsible for handling ≈ 140 security advisories in the
FreeBSD base system.
FreeBSD is a free UNIX-like operating system based on
BSD UNIX (4.4BSD-Lite2).

We’re not allowed to say that FreeBSD is UNIX because
we haven’t paid the trademark owner.

Project is 19 years old, has 200+ active source code
committers, 9.3 MLOC.
Volunteer position.

Founder of the Tarsnap online backup service.

Started in 2006, one-man company, 73 kLOC.
As FreeBSD Security Officer, I needed my backups to be
secure, and I didn’t trust any existing options.
My day job.

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Tarsnap

Tarsnap is not open source software . . .

Commercial reality: Most of the intelligence in Tarsnap
is client-side, and I don’t want to compete against my
own code.
Tarsnap is built using the “libarchive” (BSD licensed) —
the BSD license permits closed-source derivative works.
Tarsnap contributes bug fixes and non-core features back
to libarchive and spins off other code.

. . . but the client application source code is available for
users to inspect and compile themselves anyway.

Tarsnap is “Online backups for the truly paranoid”.
If you’re truly paranoid, you don’t trust opaque binaries.

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Oops

In January 2011, I received an email: “I was a little
confused by a part of the crypto . . .”.

Serious cryptographic bug: Tarsnap was reusing
encryption nonces.
Under certain conditions I might be able to read
someone’s archived data.
It turned out that my original code from June 2007 was
correct, but in April 2009 I lost a ++ when I refactored
the code.

The bug was found by someone who was reading the
code out of curiosity.

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Serendipity

“The most exciting phrase to hear in science, the one
that heralds new discoveries, is not ‘Eureka!’ but ‘That’s
funny. . .’.”

Most FreeBSD security vulnerabilities were not found by
people who were looking for them.

At least half were “I was looking at this code and I
noticed that this looked wrong”.
Many more were “I was tracking down a bug, and when
I found it I saw that it could be a security vulnerability”.
Out of over 140 FreeBSD security advisories, I only
know of 2 which were exploited in the wild before our
advisory went out.

I found the 2005 Intel HyperThreading vulnerability
because I was reading an optimization manual.

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Bug bounties

In order to get more people looking at Tarsnap code, I
decided to offer bug bounties.

Traditionally bug bounty programs have only offered
prizes for security vulnerabilities.
Problem: “I think any reviewer who wanted to get paid
would not start with Colin’s code as an easy place to
find bugs.”
Solution: Make it easier for people to win bounties.

I decided to offer bounties for all errors in my code.

Up to $2000 for a new security bug.
Down to $1 for a typographical error in a source code
comment.

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Software Engineering

If software is an engineering field, we should pay attention
to lessons learned from other engineering fields.

Industrial safety engineering has the concept of an
accident pyramid.

Observation by H. W. Heinrich in 1931: For every serious
injury, there are . . .

. . . 10 minor injuries.

. . . 30 incidents causing property damage.

. . . 600 near misses.

. . . 6000 unsafe behaviours.

In order to prevent serious injuries, target the unsafe
behaviours.

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Tarsnap bug pyramid

Only 1 major security vulnerability, but . . .

. . . 3 minor security vulnerabilities.

. . . 12 user-visible misbehaviours.

. . . 71 instances of harmlessly-wrong code.

. . . 155 cosmetic errors in code.

Most bugs could have been worse if the surrounding code
was different.

Memory leaks... in error-handling paths which result in
exit(1) a few microseconds later.
Website vulnerable to cross-site scripting... but only by a
logged-in user, against himself.
Library code has a buffer overflow... but only on input
values which never get passed to it.

If I didn’t fix these minor bugs, they could become
security vulnerabilities at a later time.

Colin Percival cperciva@tarsnap.com Crowdsourcing security

FreeBSD security non-vulnerabilities

FreeBSD has had a lot of “lucky” non-vulnerabilities too.
Vulnerabilities evaded by implementation details:
“That’s a buffer overflow... into memory which is never
used due to memory alignment requirements.”
Vulnerabilities in dead code: “That’s a bug... in a
function which is never used.”
Bugs eating bugs: “This is a remote privilege escalation
bug... in a feature which was accidentally broken ten
years ago and now crashes if you try to use it.”

All of these could easily become security vulnerabilities at
a later time if not fixed first.

Accident pyramid: To reduce workplace injuries, target
unsafe behaviours.

Software bug pyramid: To reduce security vulnerabilities,
target bad code.

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Dopamine

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Dopamine

Dopamine is released in the brain in response to
unexpected rewards.

Dopamine plays a role in mediating addictive behaviours.
Parkinson’s patients treated with dopamine agonists
often become addicted to gambling.
If you give rats access to dopamine, they will behave
very irrationally.

Looking for bugs has a similar reward profile to gambling.

Frequent $1 bug bounties mixed with occasional $10 and
$50 bug bounties.
After a while, the mental addiction supplements the cash
value of the bug bounties.

Highly skilled developers will work for $10 / hour if you
tell them that they’re winning prizes!

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Casual code review

Crowdsourced code review is casual code review.

People look at what they find interesting.
You can’t fire people for not reviewing the code you
think needs to be reviewed.
Worse than writing open source software: You don’t
even know which code has been inspected.

Did you know that telnet has support for encryption?

FreeBSD-SA-11:08.telnetd, December 23, 2011: Buffer
overflow in encryption code in BSD telnetd.
The bug was probably written as part of MIT Kerberos
in 1990, and was introduced to BSD in March 1991.
Anyone with security experience looking at the code in
the past decade would have noticed the buffer overflow...
... but nobody ever did, because we all use SSH now.

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Casual code review

Casual code readers don’t look at ugly code.

They’re usually optimizing for happiness, and ugly code
makes people sad.
If you want more people to read your code, make your
code readable.

Experiment: Divide FreeBSD source code into 50%
“stylish” files and 50% “non-stylish” files based on
consistency with indent(1).

Stylish and non-stylish files are equally likely to be
involved in a security advisory.
... but security bugs in non-stylish files are present on
average 4 × longer before they are found and fixed.
Ugly code has more bugs but gets less attention!

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Casual code review

Casual code readers seek instant gratification.

Often people will be reading your code in quanta of 10
minutes or less.
If a block of code is large or complicated, they will move
on to a simpler piece of code.

“Always code as if the person who ends up maintaining
your code is a violent psychopath who knows where you
live.” — John F. Woods

Always code as if the person who will end up reviewing
your code is an intern with ADHD who forgot to take his
Ritalin.

Excessively explicit comments can help here.
/* Add two to i. */

i++;

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Casual code review

Casual code readers (probably) aren’t domain experts.

Simple statistics: Most people aren’t domain experts.
You shouldn’t expect to receive very much useful design
review from the crowd.
You’ll probably get lots of design review, but most of it
will be hopelessly inaccurate.

Not really a big problem, since you should be able to
review your design sufficiently in-house.

You should have relevant domain expertise already.
The design should be shorter and less time-consuming to
review than the code which implements it.
If you’re designing a cryptographic protocol specified by
a 104 page long RFC, you’re doing it wrong.

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Conclusions

It may be worth publishing source code even if you can’t
or don’t want to release it under an open source license.

If your company publishes source code, you should offer
bug bounties.

Don’t think of this as an added cost; think of it as a
source of cheap developer hours.

If you want to produce secure code, sweat the small stuff.

If you want to benefit from crowd-sourced code review,
writing good, clean, well-designed code is even more
important than normal.

Colin Percival cperciva@tarsnap.com Crowdsourcing security

Questions?

Colin Percival cperciva@tarsnap.com Crowdsourcing security

