
Automated Curses Testing

Brett Lymn

Introduction
Curses is a terminal independent interface to a terminal
Optimises screen updates to minimise data sent to terminal
Parts are complex and subtle
Easy to introduce bugs that are hidden during simple testing
Opportunity to test curses using ATF to provide ongoing testing

Inception
Working on curses has always been difficult due to lack of easy testing method
Previously something like vi(1) was used to check things "looked right" or some special test code written
Using a curses application may not test all capabilities, i.e. inadequate test coverage
Using purpose built code limits the testing to that facility, difficult to write and debug, tended not to be reused

Inception II
In GSoC 2007 an automated test framework (a.k.a. atf) was created
Imported into the NetBSD tree and testing made part of the build process on the NetBSD build servers
Tests added to exercise many parts of the NetBSD codebase
One glaring omission was curses

Requirements
Curses can do timed reads, need to test this
Assembles multiple characters into a "key symbol" e.g. arrows, need to test this
Hard to just pipe characters at a test application - timeout is tricky as is synchronisation
ATF will kill a misbehaving test but the timeout is relatively long, very easy for a test to cause long delays

Requirements II
Need something that makes it easy to create new tests
redirecting stdout is NOT a tty!
TIOCSETAW means output has to be drained promptly
Simplify tests by reducing repetitive code as much as possible

Implementation
Decided to use two interconnected programs
One called the slave, this is the curses application and is able to run any curses function
The other called the director that interprets a test file and drives the slave program
Connected via a pseudo-tty and two pipes
director saves output from slave for later checking

Process Interaction

Automated Curses Testing file:///home/user/blymn/presentations/curses-test/curses-test.html

1 of 3 05/15/12 04:30

Test Language
The director has a built in test language parser
able to set and use variables
supports integers and strings
can perform a simple bit or of integers
validates return values

Test Language II
supports nested include files up to a compile time limit (32 currently)
note that variables are not scoped so include files can modify
can define input for the slave
can define timing of the input to the slave to test inter-character timeouts
compares slave output against a file of expected output

Test Language - Returns
Returns can be assigned to a variable or validated immediately
Expected values can be any type or one of ERR, OK, NULL, NON_NULL
Special command to validate the contents of a variable
rules for return by reference simple, call parameters are shifted to the LHS in the order they occur, so:

int getyx(WINDOW *win, int y, int x)

Becomes:

call2 OK y x getyx $win

Test Language - Output Validation
The director continuously saves output from the slave in a dynamic buffer
This data can be validated against expected output at any stage during the test
Writing the expected output is the most difficult, did not want to just capture current output
Output analysis is made easier by a custom terminfo entry to make the output more readable
Terminfo structured so it can be "translated" into real escape sequences mechanically
Need to be careful about some terminfo capabilities so they don't affect curses output behaviour

Automated Curses Testing file:///home/user/blymn/presentations/curses-test/curses-test.html

2 of 3 05/15/12 04:30

Sample Test Files

include start
call win1 newwin 2 5 2 5
check win1 NON_NULL
call OK wprintw $win1 "%s" "hello"
call OK wrefresh $win1
compare wprintw_refresh.chk

include window
input "input\n"
call2 OK "input" wgetstr $win1
compare wgetstr.chk
call OK wrefresh $win1
compare wgetstr_refresh.chk

Conclusion
More tests need to be written
Already found some bugs due to analysis
At the moment wide functionality cannot be tested, needs thought on how to handle this
Framework need not be limited to just curses other curses based libraries like libform, libmenu could be tested

Automated Curses Testing file:///home/user/blymn/presentations/curses-test/curses-test.html

3 of 3 05/15/12 04:30

