
FreeBSD Unified
Configuration
Andrew Pantyukhin

infofarmer@FreeBSD.org

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

once upon a time
a private cloud

petabytes of data
dozens of gigabits of transfers

teraflops of processing

4 countries
10 cities

13 data centers

11 service providers
15 support contracts

5 SLA types

~100 machines
~20 hardware configurations

~1000 hard drives

30 local networks
5 network types

7 out-of-band console types

1 operating system
(potentially more)

5 boot types

1 systems engineer
1 network engineer

1 field engineer

initial tactics
owned -> cluster

leased -> setup & forget

briefly considered
puppet, chef, cfengine

scripted per-node management

priorities
extremely low ops load and

complexity
extremely high performance and

flexibility

solution
unified configuration management

unified deployment

unified?
exactly same root fs everywhere
exactly same configs everywhere

/.git
/usr/local/project/.git

/usr/home/*/.git

fully distributed
flexible semi-auto master-master

sync
no symlinking, copying (almost)

concentrated
complexity

smarter specialization
role-aware configs

roles
passwd, group

aware.map

role-aware boot
who am I? what are my MACs?

MAC -> aware.map -> host -> roles

rc.conf - role-aware
shell script

intricate evaluation

ntpd_enable="YES"
role.www() { nginx_enable="YES"

}
role.host1() { hack_enable="YES"

}

for i in $myroles
role.$i

nginx.conf role-
compatible

{ server_name www1; }
{ server_name www2; }

syslog.conf role-
unaware

syslog.conf - most nodes
syslog.conf.collect - log collector

rc.conf-based work-
around

role.logcol() {
syslog_flags="-c

syslog.conf.collect" }

fstab role-unaware
#empty

loader.conf, scripts

boot drive
/dev/ufs/root1 - 10G
/dev/ufs/root2 - 10G

boot drive
/dev/gpt/swapserial - 4G
/dev/ufs/serial - leftover

loader.conf
vfs.mountroot

falls back to NFS root

deployment
aware.map, configs adjustment

dhcp, etc

deployment
find & partition a suitable drive
untar recent image into root1

full upgrade
untar new image into root2

pivot root1<->root2 (kernel!!)

full upgrade
rsync? pkgng?

freebsd-update?

pkg upgrade
pkgng

continuous upgrade
git pull

edit on any box
commit, push

powerful conflict resolution

pretty scalable

git is awful
rsync is lacking

need more smart configs

pretty simple
fool-proof

single-view cloud-wide config

Q&A

	FreeBSD Unified Configuration
	Andrew Pantyukhin
	infofarmer@FreeBSD.org

	once upon a time
	a private cloud

	petabytes of data
	dozens of gigabits of transfers
	teraflops of processing

	4 countries
	10 cities
	13 data centers

	11 service providers
	15 support contracts
	5 SLA types

	~100 machines
	~20 hardware configurations
	~1000 hard drives

	30 local networks
	5 network types
	7 out-of-band console types

	1 operating system
	(potentially more)
	5 boot types

	1 systems engineer
	1 network engineer
	1 field engineer

	initial tactics
	owned -> cluster
	leased -> setup & forget

	briefly considered
	puppet, chef, cfengine
	scripted per-node management

	priorities
	extremely low ops load and complexity
	extremely high performance and flexibility

	solution
	unified configuration management
	unified deployment

	unified?
	exactly same root fs everywhere
	exactly same configs everywhere

	/.git
	/usr/local/project/.git
	/usr/home/*/.git

	fully distributed
	flexible semi-auto master-master sync
	no symlinking, copying (almost)

	concentrated complexity
	smarter specialization
	role-aware configs

	roles
	passwd, group
	aware.map

	role-aware boot
	who am I? what are my MACs?
	MAC -> aware.map -> host -> roles

	rc.conf - role-aware
	shell script
	intricate evaluation

	ntpd_enable="YES"
	role.www() { nginx_enable="YES" }
	role.host1() { hack_enable="YES" }

	for i in $myroles
	role.$i

	nginx.conf role-compatible
	{ server_name www1; }
	{ server_name www2; }

	syslog.conf role-unaware
	syslog.conf - most nodes
	syslog.conf.collect - log collector

	rc.conf-based work-around
	role.logcol() {
	syslog_flags="-c syslog.conf.collect" }

	fstab role-unaware
	#empty
	loader.conf, scripts

	boot drive
	/dev/ufs/root1 - 10G
	/dev/ufs/root2 - 10G

	boot drive
	/dev/gpt/swapserial - 4G
	/dev/ufs/serial - leftover

	loader.conf
	vfs.mountroot
	falls back to NFS root

	deployment
	aware.map, configs adjustment
	dhcp, etc

	deployment
	find & partition a suitable drive
	untar recent image into root1

	full upgrade
	untar new image into root2
	pivot root1<->root2 (kernel!!)

	full upgrade
	rsync? pkgng?
	freebsd-update?

	pkg upgrade
	pkgng

	continuous upgrade
	git pull

	edit on any box
	commit, push
	powerful conflict resolution

	pretty scalable
	git is awful
	rsync is lacking
	need more smart configs

	pretty simple
	fool-proof
	single-view cloud-wide config

	Q&A

