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once upon a time
a private cloud



petabytes of data
dozens of gigabits of transfers

teraflops of processing



4 countries
10 cities

13 data centers



11 service providers
15 support contracts

5 SLA types



~100 machines
~20 hardware configurations

~1000 hard drives



30 local networks
5 network types

7 out-of-band console types



1 operating system
(potentially more)

5 boot types



1 systems engineer
1 network engineer

1 field engineer



initial tactics
owned -> cluster

leased -> setup & forget



briefly considered
puppet, chef, cfengine

scripted per-node management



priorities
extremely low ops load and

complexity
extremely high performance and

flexibility



solution
unified configuration management

unified deployment



unified?
exactly same root fs everywhere
exactly same configs everywhere



/.git
/usr/local/project/.git

/usr/home/*/.git



fully distributed
flexible semi-auto master-master

sync
no symlinking, copying (almost)



concentrated
complexity

smarter specialization
role-aware configs



roles
passwd, group

aware.map



role-aware boot
who am I? what are my MACs?

MAC -> aware.map -> host -> roles



rc.conf - role-aware
shell script

intricate evaluation



ntpd_enable="YES"
role.www() { nginx_enable="YES"

}
role.host1() { hack_enable="YES"

}



for i in $myroles
role.$i



nginx.conf role-
compatible

{ server_name www1; }
{ server_name www2; }



syslog.conf role-
unaware

syslog.conf - most nodes
syslog.conf.collect - log collector



rc.conf-based work-
around

role.logcol() {
syslog_flags="-c

syslog.conf.collect" }



fstab role-unaware
#empty

loader.conf, scripts



boot drive
/dev/ufs/root1 - 10G
/dev/ufs/root2 - 10G



boot drive
/dev/gpt/swapserial - 4G
/dev/ufs/serial - leftover



loader.conf
vfs.mountroot

falls back to NFS root



deployment
aware.map, configs adjustment

dhcp, etc



deployment
find & partition a suitable drive
untar recent image into root1



full upgrade
untar new image into root2

pivot root1<->root2 (kernel!!)



full upgrade
rsync? pkgng?

freebsd-update?



pkg upgrade
pkgng



continuous upgrade
git pull



edit on any box
commit, push

powerful conflict resolution



pretty scalable



git is awful
rsync is lacking

need more smart configs



pretty simple
fool-proof

single-view cloud-wide config



Q&A
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