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What is it?

● People know what memcached is... mostly
● Example use case:

– So you have a web page which is just 
dynamic enough so you can't cache it 
completely as an HTML dump

– You have a SQL query on this page which
is 99.99% always the same (same query, 
same answer)

– ...so you cache it



 

 

Why a cache server?

● Sharing between processes
– … on different servers

● In environments which do not implement 
application persistency

– CGI, FastCGI
– PHP

● Or you're simply lazy and want something 
which works...



 

 

A little bit of history...

● This started as my “pet project”...
– It's so ancient, when I first started working 

on it, Memcached was still single-threaded
– It's gone through at least one rewrite and 

a whole change of concept

● I made it because of the frustration I felt 
while working with Memcached

– Key-value databases are so very basic
– “I could do better than that” :)



 

 

Now...

● Used in production in my university's 
project

● Probably the fastest memory cache 
engine available (in specific 
circumstances)

● Available in FreeBSD ports 
(databases/mdcached)

● Has a 20-page User Manual :)



 

 

What's wrong with memcached?

● Nothing much – it's solid work
● The classic problem:

cache expiry / invalidation
– memcached accepts a list of records to 

expire (inefficient, need to maintain this 
list)

● It's fast – but is it fast enough?
– Does it really make use of multiple CPUs 

as efficiently as possible?



 

 

Introducing the Bullet Cache

1. Offers a smarter data structure to 
the user side than a simple
key-value pair

2. Implements “interesting” internal 
data structures

3. Some interesting bells & whistles 



 

 

User-visible structure

● Traditional (memcached) style:
– Key-value pairs
– Relatively short keys (255 bytes)
– ASCII-only keys (?)
– (ASCII-only protocol)
– Multi-record operations only with a list of 

records
– Simple atomic operations (relatively 

inefficient - atoi())



 

 

Introducing record tags

● They are metadata
● Constraints:

– Must be fast (they are NOT db indexes)
– Must allow certain types of bulk operations

● The implementation:
– Both key and value are signed integers
– No limit on the number of tags per record
– Bulk queries: (tkey X) && (tval1, [tval2...])



 

 

Record tags

● I heard you like key-value records so I've 
put key-value records into your key-value 
records...

record key record value

k v k v k v ...

generic metadata



 

 

Metadata queries (1)

● Use case example: a web application has 
a page “/contacts” which contains data 
from several SQL queries as well as other 
sources (LDAP)

– Tag all cached records with
(tkey,tval) = (42, hash(“/contacts”))

– When constructing page, issue query:
get_by_tag_values(42, hash(“/contacts”))

– When expiring all data, issue query:
del_by_tag_values(42, hash(“/contacts”))



 

 

Metadata queries (2)

● Use case example: Application objects are 
stored (serialized, marshalled) into the 
cache, and there's a need to invalidate 
(expire) all objects of a certain type

– Tag records with
(tkey, tval) = (object_type, instance_id)

– Expire with
del_by_tag_values(object_type, instance_id)

– Also possible: tagging object 
interdependance



 

 

Under the hood

● It's “interesting”...
● Started as a C project, now mostly 

converted to C++ for easier 
modularization

– Still uses C-style structures and algorithms 
for the core parts – i.e. not std::containers

● Contains tests and benchmarks within the 
main code base

– C and PHP client libraries



 

 

The main data structure

● A “forest of trees”, 
anchored in hash 
table buckets

● Buckets are 
directly addressed 
by hashing record 
keys

● Buckets are 
protected by 
rwlocks
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Basic operation

1.Find h = 
Hash(key)

2.Acquire lock #h

3.Find record in RB
tree indexed by 
key

4.Perform operation

5.Release lock #h
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Record tags follow 
a similar pattern

● The tags index the 
main structure and 
are maintained 
(almost) 
independently

Hash value = H1

RW
lock

TK1 TK2 TK3 TK4

Hash value = H2

RW
lock

TK1 TK2 TK3 TK4

...



 

 

Concurrency and locking

● Concurrency is great – the default 
configuration starts 256 record buckets 
and 64 tag buckets

● Locking is without ordering assumptions
– *_trylock() for everything
– rollback-and-retry
– No deadlocks

● Livelocks on the other hand need to be 
investigated



 

 

Two-way linking between
records and tags
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Concurrency

● Scenario 1:
– A record is 

referenced → 
need to hold N 
tag bucket locks

● Scenario 2:
– A tag is 

referenced → 
need to hold M 
record bucket 
locks
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Multithreading models

● Aka “which thread does what”
● Three basic tasks:

– T1: Connection acceptance
– T2: Network IO
– T3: Payload work

● The big question: how to distribute these 
into threads?



 

 

Multithreading models

● SPED : Single process, event driven
● SEDA : Staged, event-driven architecture
● AMPED : Asymmetric, multi-process, 

event-driven
● SYMPED : Symmetric, multi-process, 

event driven Model New connection 
handler

Network IO 
handler

Payload work

SPED 1 thread In connection thread In connection thread

SEDA 1 thread N1 threads N2 threads

SEDA-S 1 thread N threads N threads

AMPED 1 thread 1 thread N threads

SYMPED 1 thread N threads In network thread



 

 

All the models are event-driven

● The “dumb” model: thread-per-
connection

● Not really efficient
– (FreeBSD has experimented with KSE and 

M:N threading but that didn't work out)

● IO events: via kqueue(2)
● Inter-thread synchronization: queues 

signalled with CVs



 

 

SPED

● Single-threaded, event-driven
● Very efficient on

single-CPU systems
● Most efficient if

the operation is
very fast (compared
to network IO and
event handling)

● Used in efficient Unix network servers



 

 

SEDA

● Staged, event-driven
● Different task threads

instantiated in
different numbers

● Generally,
N1 != N2 != N3

● The most queueing
● The most separation

of tasks – most CPUs used
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AMPED

● Asymmetric multi-process event-driven
● Asymmetric: N(T2) != N(T3)
● Assumes network IO

processing is cheap
compared to
operation processing

● Moderate amount of queuing
● Can use arbitrary number of CPUs

T1 T2 T3

T3

T3



 

 

SYMPED

● Symmetric multi-process event-driven
● Symmetric: grouping of tasks
● Assumes network IO

and operation 
processing are similarly
expensive but uniform

● Sequential processing
inside threads

● Similar to multiple instances of SPED

T1

T2+T3

T2+T3

T2+T3



 

 

Multithreading models
in Bullet Cache

● Command-line configuration:
– n : number of network threads
– t : number of payload threads

● n=0, t=0 : SPED
● n=1, t>0 : AMPED
● n>0, t=0 : SYMPED
● n>1, t>0 : SEDA
● n>1, t>1, n=t : SEDA-S (symmetrical)



 

 

How does that work?

● SEDA: the same network loop accepts 
connections and network IO

● Others: The network IO threads accept 
messages, then either:

– process them in-thread or 
– queue them on worker thread queues

● Response messages are either sent in-
thread from whichever thread generates 
them or finished with the IO event code



 

 

Performance of various models
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Why is SYMPED efficient?

● The same thread receives the message 
and processes it

● No queueing
– No context switching
– In the optimal case: no any kind of 

(b)locking delays

● Downsides:
– Serializes network IO and processing 

within the thread (which is ok if per-CPU)



 

 

Notable performance 
optimizations

● “zero-copy” operation
– Queries which do not involve complex 

processing or record aggregation are are 
satisfied directly from data structures

● “zero-malloc” operation
– The code re-uses memory buffers as much 

as possible; the fast path is completely 
malloc()- and memcpy()-free

● Adaptive dynamic buffer sizes
– malloc() usage is tracked to avoid realloc()



 

 

State of the art
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… under certain conditions

● The optimal, fast path (zero-memcpy, 
zero-malloc, optimal buffers)

– Which is actually less important, we know 
that these algorithms are fast...

● Using Unix domain sockets
– Much more important
– FreeBSD's network stack (the TCP path) is 

currently basically nonscalable to SMP?
– UDP path is more scalable …  WIP



 

 

TCP vs Unix sockets
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NUMA Effects
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Scalability wrt number of records
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Bells & whistles

● Binary protocol (endian-dependant)
● Extensive atomic operation set

– cmpset, add, fetchadd, readandclear

● “tstack” operations
– Every tag (tk,tv) identifies a stack
– Push and pop operations on records

● Periodic data dumps / chekpoints
– Cache pre-warm (load from file)



 

 

Usage ideas

● Application data cache, database cache
– Semantically tag cached records
– Efficient retrieval and expiry (deletion)

● Primary data storage
– High-performance ephemeral storage
– Optional periodic checkpoints

● Data sharing between app server nodes
● Esoteric: distributed lock manager, stack



 

 

Bullet Cache

Balancing speed and usability
in a cache server

http://www.sf.net/projects/mdcached

Ivan Voras <ivoras@freebsd.org>
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