
 

 

Bullet Cache

Balancing speed and usability
in a cache server

Ivan Voras <ivoras@freebsd.org>



 

 

What is it?

● People know what memcached is... mostly
● Example use case:

– So you have a web page which is just 
dynamic enough so you can't cache it 
completely as an HTML dump

– You have a SQL query on this page which
is 99.99% always the same (same query, 
same answer)

– ...so you cache it



 

 

Why a cache server?

● Sharing between processes
– … on different servers

● In environments which do not implement 
application persistency

– CGI, FastCGI
– PHP

● Or you're simply lazy and want something 
which works...



 

 

A little bit of history...

● This started as my “pet project”...
– It's so ancient, when I first started working 

on it, Memcached was still single-threaded
– It's gone through at least one rewrite and 

a whole change of concept

● I made it because of the frustration I felt 
while working with Memcached

– Key-value databases are so very basic
– “I could do better than that” :)



 

 

Now...

● Used in production in my university's 
project

● Probably the fastest memory cache 
engine available (in specific 
circumstances)

● Available in FreeBSD ports 
(databases/mdcached)

● Has a 20-page User Manual :)



 

 

What's wrong with memcached?

● Nothing much – it's solid work
● The classic problem:

cache expiry / invalidation
– memcached accepts a list of records to 

expire (inefficient, need to maintain this 
list)

● It's fast – but is it fast enough?
– Does it really make use of multiple CPUs 

as efficiently as possible?



 

 

Introducing the Bullet Cache

1. Offers a smarter data structure to 
the user side than a simple
key-value pair

2. Implements “interesting” internal 
data structures

3. Some interesting bells & whistles 



 

 

User-visible structure

● Traditional (memcached) style:
– Key-value pairs
– Relatively short keys (255 bytes)
– ASCII-only keys (?)
– (ASCII-only protocol)
– Multi-record operations only with a list of 

records
– Simple atomic operations (relatively 

inefficient - atoi())



 

 

Introducing record tags

● They are metadata
● Constraints:

– Must be fast (they are NOT db indexes)
– Must allow certain types of bulk operations

● The implementation:
– Both key and value are signed integers
– No limit on the number of tags per record
– Bulk queries: (tkey X) && (tval1, [tval2...])



 

 

Record tags

● I heard you like key-value records so I've 
put key-value records into your key-value 
records...

record key record value

k v k v k v ...

generic metadata



 

 

Metadata queries (1)

● Use case example: a web application has 
a page “/contacts” which contains data 
from several SQL queries as well as other 
sources (LDAP)

– Tag all cached records with
(tkey,tval) = (42, hash(“/contacts”))

– When constructing page, issue query:
get_by_tag_values(42, hash(“/contacts”))

– When expiring all data, issue query:
del_by_tag_values(42, hash(“/contacts”))



 

 

Metadata queries (2)

● Use case example: Application objects are 
stored (serialized, marshalled) into the 
cache, and there's a need to invalidate 
(expire) all objects of a certain type

– Tag records with
(tkey, tval) = (object_type, instance_id)

– Expire with
del_by_tag_values(object_type, instance_id)

– Also possible: tagging object 
interdependance



 

 

Under the hood

● It's “interesting”...
● Started as a C project, now mostly 

converted to C++ for easier 
modularization

– Still uses C-style structures and algorithms 
for the core parts – i.e. not std::containers

● Contains tests and benchmarks within the 
main code base

– C and PHP client libraries



 

 

The main data structure

● A “forest of trees”, 
anchored in hash 
table buckets

● Buckets are 
directly addressed 
by hashing record 
keys

● Buckets are 
protected by 
rwlocks

RW
lock node

node

node

node

node

node

Red-black
tree

RW
lock node

node

node

node

node

node

Red-black
tree

hash value = H1

hash value = H2

. . .

tree root

tree root

Hash table



 

 

Basic operation

1.Find h = 
Hash(key)

2.Acquire lock #h

3.Find record in RB
tree indexed by 
key

4.Perform operation

5.Release lock #h

RW
lock

node

node

node

node

node

node

Red-black
tree

RW
lock

node

node

node

node

node

node

Red-black
tree

hash value = H1

hash value = H2

. . .

tree root

tree root

Hash table

1

2

3

4

5

OP

end



 

 

Record tags follow 
a similar pattern

● The tags index the 
main structure and 
are maintained 
(almost) 
independently

Hash value = H1

RW
lock

TK1 TK2 TK3 TK4

Hash value = H2

RW
lock

TK1 TK2 TK3 TK4

...



 

 

Concurrency and locking

● Concurrency is great – the default 
configuration starts 256 record buckets 
and 64 tag buckets

● Locking is without ordering assumptions
– *_trylock() for everything
– rollback-and-retry
– No deadlocks

● Livelocks on the other hand need to be 
investigated



 

 

Two-way linking between
records and tags

RW
lock node

node

node

node

node

node

RW
lock node

node

node

node

node

node

hash value = H1

hash value = H2

. . .

tree root

tree root

Hash table

hash value = H1

RW
lock

TK1 TK2 TK3 TK4

hash value = H2

RW
lock

TK1 TK2 TK3 TK4

...



 

 

Concurrency

● Scenario 1:
– A record is 

referenced → 
need to hold N 
tag bucket locks

● Scenario 2:
– A tag is 

referenced → 
need to hold M 
record bucket 
locks

4 8 16 32 64 128 256

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NCPU=64, SHARED NCPU=64, EXCLUSIVE

NCPU=8, SHARED NCPU=8, EXCLUSIVE

Number of hash table buckets (H)

P
e

rc
e

n
ta

g
e

 o
f u

n
co

n
te

s
te

d
 lo

ck
 a

cq
u

is
iti

o
n

s
 (

U
)

Percentage of uncontested lock acquisitions



 

 

Multithreading models

● Aka “which thread does what”
● Three basic tasks:

– T1: Connection acceptance
– T2: Network IO
– T3: Payload work

● The big question: how to distribute these 
into threads?



 

 

Multithreading models

● SPED : Single process, event driven
● SEDA : Staged, event-driven architecture
● AMPED : Asymmetric, multi-process, 

event-driven
● SYMPED : Symmetric, multi-process, 

event driven Model New connection 
handler

Network IO 
handler

Payload work

SPED 1 thread In connection thread In connection thread

SEDA 1 thread N1 threads N2 threads

SEDA-S 1 thread N threads N threads

AMPED 1 thread 1 thread N threads

SYMPED 1 thread N threads In network thread



 

 

All the models are event-driven

● The “dumb” model: thread-per-
connection

● Not really efficient
– (FreeBSD has experimented with KSE and 

M:N threading but that didn't work out)

● IO events: via kqueue(2)
● Inter-thread synchronization: queues 

signalled with CVs



 

 

SPED

● Single-threaded, event-driven
● Very efficient on

single-CPU systems
● Most efficient if

the operation is
very fast (compared
to network IO and
event handling)

● Used in efficient Unix network servers



 

 

SEDA

● Staged, event-driven
● Different task threads

instantiated in
different numbers

● Generally,
N1 != N2 != N3

● The most queueing
● The most separation

of tasks – most CPUs used

T1

T2

T2

T2

T3

T3

T3

T3



 

 

AMPED

● Asymmetric multi-process event-driven
● Asymmetric: N(T2) != N(T3)
● Assumes network IO

processing is cheap
compared to
operation processing

● Moderate amount of queuing
● Can use arbitrary number of CPUs

T1 T2 T3

T3

T3



 

 

SYMPED

● Symmetric multi-process event-driven
● Symmetric: grouping of tasks
● Assumes network IO

and operation 
processing are similarly
expensive but uniform

● Sequential processing
inside threads

● Similar to multiple instances of SPED

T1

T2+T3

T2+T3

T2+T3



 

 

Multithreading models
in Bullet Cache

● Command-line configuration:
– n : number of network threads
– t : number of payload threads

● n=0, t=0 : SPED
● n=1, t>0 : AMPED
● n>0, t=0 : SYMPED
● n>1, t>0 : SEDA
● n>1, t>1, n=t : SEDA-S (symmetrical)



 

 

How does that work?

● SEDA: the same network loop accepts 
connections and network IO

● Others: The network IO threads accept 
messages, then either:

– process them in-thread or 
– queue them on worker thread queues

● Response messages are either sent in-
thread from whichever thread generates 
them or finished with the IO event code



 

 

Performance of various models

20 40 60 80 100 120 140

0

50

100

150

200

250

300

350

400

450

500

SPED SEDA SEDA-S AMPED SYMPED

Number of clients

T
h

o
u

s
a

n
d

s
 o

f t
ra

n
s

a
ct

io
n

s
/s

Except in special
circumstances,

SYMPED is best



 

 

Why is SYMPED efficient?

● The same thread receives the message 
and processes it

● No queueing
– No context switching
– In the optimal case: no any kind of 

(b)locking delays

● Downsides:
– Serializes network IO and processing 

within the thread (which is ok if per-CPU)



 

 

Notable performance 
optimizations

● “zero-copy” operation
– Queries which do not involve complex 

processing or record aggregation are are 
satisfied directly from data structures

● “zero-malloc” operation
– The code re-uses memory buffers as much 

as possible; the fast path is completely 
malloc()- and memcpy()-free

● Adaptive dynamic buffer sizes
– malloc() usage is tracked to avoid realloc()



 

 

State of the art

92 185 278 371 464 558 651 744 837 930 1023 1395 1861 2792 3723

200.000 TPS

400.000 TPS

600.000 TPS

800.000 TPS

1.000.000 TPS

1.200.000 TPS

1.400.000 TPS

1.600.000 TPS

1.800.000 TPS

2.000.000 TPS

System A (June 2010) System B (Jan 2011) System B (Jun 2011)

System C (Dec 2011) System D (Mar 2012)

Average record data size

P
e

rf
o

rm
a

n
ce



 

 

State of the art

92 185 278 371 464 558 651 744 837 930 1023 1395 1861 2792 3723

200.000 TPS

400.000 TPS

600.000 TPS

800.000 TPS

1.000.000 TPS

1.200.000 TPS

1.400.000 TPS

1.600.000 TPS

1.800.000 TPS

2.000.000 TPS

System A (June 2010) System B (Jan 2011) System B (Jun 2011)

System C (Dec 2011) System D (Mar 2012)

Average record data size

P
e

rf
o

rm
a

n
ce

Xeon 5675, 6-core, 3 GHzXeon 5675, 6-core, 3 GHz
+HTT

9-stable, March 2012



 

 

… under certain conditions

● The optimal, fast path (zero-memcpy, 
zero-malloc, optimal buffers)

– Which is actually less important, we know 
that these algorithms are fast...

● Using Unix domain sockets
– Much more important
– FreeBSD's network stack (the TCP path) is 

currently basically nonscalable to SMP?
– UDP path is more scalable …  WIP



 

 

TCP vs Unix sockets

104 209 314 420 525 639 735 840 945 1050 1576 2102 3153 4204
0 TPS

100,000 TPS

200,000 TPS

300,000 TPS

400,000 TPS

500,000 TPS

600,000 TPS

700,000 TPS

800,000 TPS

900,000 TPS

1,000,000 TPS

System D / mdcached System D / memcached System D / redis

Average record size



 

 

NUMA Effects

1 2 3 4 5 6 7 8 9 10 15 20 30 40
0 TPS

200,000 TPS

400,000 TPS

600,000 TPS

800,000 TPS

1,000,000 TPS

1,200,000 TPS

1,400,000 TPS

1,600,000 TPS

1,800,000 TPS

2,000,000 TPS

System D System D / NUMA System D / ULE

cpuset(4)-bound to 
a single socket

cpuset(4) client & server 
separate sockets

No cpuset(4)
only ULE

It's unlikely that better NUMA support would help at all...



 

 

Scalability wrt number of records

1.000 10.000 100.000 1.000.000 10.000.000

300.000 TPS

320.000 TPS

340.000 TPS

360.000 TPS

380.000 TPS

400.000 TPS

420.000 TPS

440.000 TPS

mdcached



 

 

Bells & whistles

● Binary protocol (endian-dependant)
● Extensive atomic operation set

– cmpset, add, fetchadd, readandclear

● “tstack” operations
– Every tag (tk,tv) identifies a stack
– Push and pop operations on records

● Periodic data dumps / chekpoints
– Cache pre-warm (load from file)



 

 

Usage ideas

● Application data cache, database cache
– Semantically tag cached records
– Efficient retrieval and expiry (deletion)

● Primary data storage
– High-performance ephemeral storage
– Optional periodic checkpoints

● Data sharing between app server nodes
● Esoteric: distributed lock manager, stack



 

 

Bullet Cache

Balancing speed and usability
in a cache server

http://www.sf.net/projects/mdcached

Ivan Voras <ivoras@freebsd.org>


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

