
An Overview of Locking
in the FreeBSD Kernel

Brought to you by

Dr. Marshall Kirk McKusick

BSDCan Conference
May 11, 2012

University of Ottawa
Ottawa, Canada

Copyright 2012 Marshall Kirk McKusick.
All Rights Reserved.



Outline

• Historic synchronization

• Lock hierarchy

• Turnstiles and sleep queues

• Details of each lock type

• Witness system



Historic Synchronization

1) Checkfor Resource

2) If NOT Available

• set WANT flag

• sleep on it

3) If IS Available

• set LOCK flag

• use it (while possibly sleeping)

• clear LOCK flag

• if WANT flag set wakeup all processes
sleeping on it



Lock Hierarchy

• Hardware − memory interlock test-and-set

• Spin mutex − spin lock

• Locks that block briefly, but may not sleep

• Blocking mutex − spin for a while, then
block on a turnstile

• Pool mutex − general-use blocking
mutex

• Reader-Writer locks − mutexes with
shared-exclusive semantics

• Read-mostly locks − fast access for
reading

• Locks using sleep-queue interface

• Shared-Exclusive locks − fast and
simple sleep locks

• Condition variables − wrapper on
traditional sleep/wakeup

• Lock manager − long-term full-
function sleep lock

• Witness − partially-ordered sleep locks



Turnstiles

• Used by blocking mutexes, reader-writer, and
read-mostly locks

• Designed for short periods, typically a few
tens of instructions

• Used to protect read and write access to data
structures and lists

• May not own a turnstile lock when requesting
a sleep-queue lock

• Tracks current lock holder

• Priority propagation from waiter to holder



Turnstile Implementation

• Hash header to quickly find a lock’s
turnstile. Theturnstile points to the thread
holding the lock and to any threads
waiting for the lock

• A turnstile is needed each time a thread
blocks. Sincea thread can only block on
one lock at a time, it provides its own
turnstile.

• Unneeded turnstiles are saved and returned
when a thread awakens

• If the holder of a lock has a lower priority
than the thread about to be blocked,
recursively propagate the higher priority to
the holder (but only until it releases the
lock).



Turnstile Data Structures

Lock 15

owner

lock

waiting

hash header
Turnstile

waiting

owner

owner

lock

waiting

lock

waiting

lock

owner

owned

owned

owned

owned

owned

owned

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

• • •

Lock 18

Lock 6

Lock 4



Sleep Queues

• Used by shared-exclusive locks, condition
variables, and lock-manager locks

• Designed for long periods, typically waiting
for I/O events or user input

• No priority propagation

• May not own a turnstile lock when requesting
a sleep-queue lock

• Tracks current exclusive lock holder

• May be recursive



Critical Sections

• Uses critical_enter() and critical exit()

• While in a critical section:

• The thread cannot be preempted by
another thread

• The thread cannot be migrated to
another CPU

• Critical sections are much like the old
single threaded kernel

• Useful for per-CPU data structures like a
run-queue or CPU-specific memory
allocation structures

• Cannot protect systemwide data structures



Hardwar e Requirements for Locking

• Minimum requirement is test-and-set
instruction

• On modern hardware, FreeBSD uses
compare-and-swap

• Owner field for a free lock contains
MTX_UNOWNED

• Owner field for a held lock contains
pointer to owning thread

• Allocation attempt compares lock
owner with MTX_UNOWNED and if it
matches stores pointer to acquiring
thread and returns previous owner value

• If previous owner value was
MTX_UNOWNED, acquisition
succeeded

• Store MTX_UNOWNED in owner field
for lock to release it



Spin Mutex

• Exclusive access only

• Loops waiting for the mutex to become
available

• Runs inside a critical section while held to
avoid deadlock

• More expensive to obtain than a blocking
mutex

• In FreeBSD, used only for low-level
scheduling and context-switching



Blocking Mutex

• Exclusive access only

• Uses adaptive spinning which only spins if
the owner of the lock is currently running

• Current owner typically done with it
quickly

• If owner on run queue, blocking lets
waiter give its CPU to owner

• All waiters are awakened when lock is
released

• Cheaper to release an uncontested lock
since just a store rather than find and
traverse the turnstile

• Often end up scheduling sequentially

• When scheduled concurrently, adaptive
spinning usually ensures that they will
not block



Pool Mutex

• Used for small short-lived data structures

• Just need a pointer to a mutex rather
than large mutex itself

• Mutex is preallocated so avoid high
creation and destruction times

• Example is poll system call that needs a
structure to track a poll request from the
time the system call is entered until the
arrival of data for one of the polled
descriptors.



Reader-Writer Locks

• In addition to exclusive access of a mutex
also provide shared semantics

• Uses a turnstile so cannot be held when
thread goes to sleep

• Provides priority propagation for exclusive
access

• Does not provide priority propagation for
shared access

• May specify permission to recurse



Read-Mostly Locks

• Same properties as reader-writer locks except
they add priority propagation for shared
access by tracking shared owners using a
caller-supplied tracker data structure

• Designed for fast access for readers (shared
access) assuming there will be few writers
(exclusive access)

• Read without a lock then check if write
happened

• If write happened fall back to using lock to
get coherent access

• The routing table is a good example of a
read-mostly data structure

• Best way to implement read-mostly locks is
patented by IBM

• IBM allows GPL’ed code to use their
patented implementation at no cost

• FreeBSD is not GPL, so we have to use a
slower technique



Shared-Exclusive Locks

• Fastest and simplest of the locks that can
sleep

• Provide shared and exclusive access

• May specify permission to recurse

• May request interruption by a signal

• Limited upgrade and downgrade
capabilities

• Like all sleep locks, does not implement
priority propagation



Condition Variables

• Wrapper on traditional sleep and wakeup

• Allows waiting with optional time out
and/or interruption by a signal

• Allows waking up one or all waiters

• Must hold a mutex before awakening or
waiting (mutex is released while waiting).



Lock Manager Locks

• Most full-featured of the locks that can
sleep

• Provide shared and exclusive access

• May specify permission to recurse

• May request a time out and/or interruption
by a signal

• Allows downgrade, upgrade, and exclusive
upgrade

• The ability to pass ownership of the lock
from a thread to the kernel

• The ability to drain all accessing threads in
preparation for being deallocated

• Like all sleep locks, does not implement
priority propagation



Witness

2

R R R R
1’ 1’’ 2’ 2’’

Class 1 Class 2

Thread
BA

Thread

R
1

R

Partial ordering requires:

1) A thread may acquire only one lock in a
class

2) A thread may acquire only a lock in a
higher-numbered class than the highest-
numbered class for which it already holds
a lock

• Programmers can define lock classes

• Witness code observes actual lock
ordering and complains when either rule is
violated



Questions

Marshall Kirk McKusick

<mckusick@mckusick.com>

http://www.mckusick.com


