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Outline

• Historic synchronization

• Lock hierarchy

• Turnstiles and sleep queues

• Details of each lock type

• Witness system



Historic Synchronization

1) Checkfor Resource

2) If NOT Available

• set WANT flag

• sleep on it

3) If IS Available

• set LOCK flag

• use it (while possibly sleeping)

• clear LOCK flag

• if WANT flag set wakeup all processes
sleeping on it



Lock Hierarchy

• Hardware − memory interlock test-and-set

• Spin mutex − spin lock

• Locks that block briefly, but may not sleep

• Blocking mutex − spin for a while, then
block on a turnstile

• Pool mutex − general-use blocking
mutex

• Reader-Writer locks − mutexes with
shared-exclusive semantics

• Read-mostly locks − fast access for
reading

• Locks using sleep-queue interface

• Shared-Exclusive locks − fast and
simple sleep locks

• Condition variables − wrapper on
traditional sleep/wakeup

• Lock manager − long-term full-
function sleep lock

• Witness − partially-ordered sleep locks



Turnstiles

• Used by blocking mutexes, reader-writer, and
read-mostly locks

• Designed for short periods, typically a few
tens of instructions

• Used to protect read and write access to data
structures and lists

• May not own a turnstile lock when requesting
a sleep-queue lock

• Tracks current lock holder

• Priority propagation from waiter to holder



Turnstile Implementation

• Hash header to quickly find a lock’s
turnstile. Theturnstile points to the thread
holding the lock and to any threads
waiting for the lock

• A turnstile is needed each time a thread
blocks. Sincea thread can only block on
one lock at a time, it provides its own
turnstile.

• Unneeded turnstiles are saved and returned
when a thread awakens

• If the holder of a lock has a lower priority
than the thread about to be blocked,
recursively propagate the higher priority to
the holder (but only until it releases the
lock).



Turnstile Data Structures
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Sleep Queues

• Used by shared-exclusive locks, condition
variables, and lock-manager locks

• Designed for long periods, typically waiting
for I/O events or user input

• No priority propagation

• May not own a turnstile lock when requesting
a sleep-queue lock

• Tracks current exclusive lock holder

• May be recursive



Critical Sections

• Uses critical_enter() and critical exit()

• While in a critical section:

• The thread cannot be preempted by
another thread

• The thread cannot be migrated to
another CPU

• Critical sections are much like the old
single threaded kernel

• Useful for per-CPU data structures like a
run-queue or CPU-specific memory
allocation structures

• Cannot protect systemwide data structures



Hardwar e Requirements for Locking

• Minimum requirement is test-and-set
instruction

• On modern hardware, FreeBSD uses
compare-and-swap

• Owner field for a free lock contains
MTX_UNOWNED

• Owner field for a held lock contains
pointer to owning thread

• Allocation attempt compares lock
owner with MTX_UNOWNED and if it
matches stores pointer to acquiring
thread and returns previous owner value

• If previous owner value was
MTX_UNOWNED, acquisition
succeeded

• Store MTX_UNOWNED in owner field
for lock to release it



Spin Mutex

• Exclusive access only

• Loops waiting for the mutex to become
available

• Runs inside a critical section while held to
avoid deadlock

• More expensive to obtain than a blocking
mutex

• In FreeBSD, used only for low-level
scheduling and context-switching



Blocking Mutex

• Exclusive access only

• Uses adaptive spinning which only spins if
the owner of the lock is currently running

• Current owner typically done with it
quickly

• If owner on run queue, blocking lets
waiter give its CPU to owner

• All waiters are awakened when lock is
released

• Cheaper to release an uncontested lock
since just a store rather than find and
traverse the turnstile

• Often end up scheduling sequentially

• When scheduled concurrently, adaptive
spinning usually ensures that they will
not block



Pool Mutex

• Used for small short-lived data structures

• Just need a pointer to a mutex rather
than large mutex itself

• Mutex is preallocated so avoid high
creation and destruction times

• Example is poll system call that needs a
structure to track a poll request from the
time the system call is entered until the
arrival of data for one of the polled
descriptors.



Reader-Writer Locks

• In addition to exclusive access of a mutex
also provide shared semantics

• Uses a turnstile so cannot be held when
thread goes to sleep

• Provides priority propagation for exclusive
access

• Does not provide priority propagation for
shared access

• May specify permission to recurse



Read-Mostly Locks

• Same properties as reader-writer locks except
they add priority propagation for shared
access by tracking shared owners using a
caller-supplied tracker data structure

• Designed for fast access for readers (shared
access) assuming there will be few writers
(exclusive access)

• Read without a lock then check if write
happened

• If write happened fall back to using lock to
get coherent access

• The routing table is a good example of a
read-mostly data structure

• Best way to implement read-mostly locks is
patented by IBM

• IBM allows GPL’ed code to use their
patented implementation at no cost

• FreeBSD is not GPL, so we have to use a
slower technique



Shared-Exclusive Locks

• Fastest and simplest of the locks that can
sleep

• Provide shared and exclusive access

• May specify permission to recurse

• May request interruption by a signal

• Limited upgrade and downgrade
capabilities

• Like all sleep locks, does not implement
priority propagation



Condition Variables

• Wrapper on traditional sleep and wakeup

• Allows waiting with optional time out
and/or interruption by a signal

• Allows waking up one or all waiters

• Must hold a mutex before awakening or
waiting (mutex is released while waiting).



Lock Manager Locks

• Most full-featured of the locks that can
sleep

• Provide shared and exclusive access

• May specify permission to recurse

• May request a time out and/or interruption
by a signal

• Allows downgrade, upgrade, and exclusive
upgrade

• The ability to pass ownership of the lock
from a thread to the kernel

• The ability to drain all accessing threads in
preparation for being deallocated

• Like all sleep locks, does not implement
priority propagation



Witness
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Partial ordering requires:

1) A thread may acquire only one lock in a
class

2) A thread may acquire only a lock in a
higher-numbered class than the highest-
numbered class for which it already holds
a lock

• Programmers can define lock classes

• Witness code observes actual lock
ordering and complains when either rule is
violated
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