Verifiedexec: An Introduction

Brett Lymn

Introduction

The \erifiedexec feature has been in the NetBSD kernel since late 2002 and is designedde aro
method of ensuring that the binary that is being run, and the underlying shared librarydentseen
tampered with. It can detect the difference betweerxerutable being directlyxecuted by the shell and
one being used as a shell interpreter in a shell scFips means different behaviours can be applied to an
executables direct Wocation vs one being used as a shell interpréterifiedexec not only covers executa-
bles but also handles arbitrary files, this\aaot only the shared libraries thateutables may rely on to
be protected but alsowgs the opportunity to protect files such as configuration files from tampering.

This paper will discuss the history aénfiedexec, where it is at in the currengssion of NetBSD and
some possible features that could be added in the future.

Origins

Late in the last millenium there was a dra-
matic rise in the number of attacks using either
trojan horses or root-kits reported on mailing lists
such as BugtragWhilst reading these reports |
started to wnder wly the kernel was being so
cooperatte in running whateer random
executable that it was fed and if there could be a
way of alowing known good xecutable to run
but refuse to run one that va d@ther been tam-
pered with (a trojan horse) or one that had been
installed to perform a malicious function (a root-
kit). | felt that techniques usingvailable at the
time such as file attributes and mount permissions
were difficult to correctly implement and a single
error in the set up could leathe machine vulner
able or that conflicting requirements for some
paths may require compromises that reduce the
security of the configuration. There were pro-
grams such as tripwire thatowld scan the file
system for modificationsub these ran at usevig
and were vulnerable to such as shimming libraries
to hide a root-kit by presenting unmodified files
when a scan was runWith this in mind | started
thinking about ha the kernel could tell if an
executable was one that it should run or nét.
thought that if the &rnel kept a list of fingerprints
and then wauated the fingerprint of an
executable prior to xecution then we could tell if
the file has been tampered with. The major con-
cern | had with this approach aw that the

performance wuld be poor since very time
something wasx@cuted the fingerprint would be
evduated. Notonly would this break demand
paging due to the entirxeutable file being read
in every time but wuld also create anverhead
simply by performing the fingerprinting opera-
tion. To avoid the performance impact | decided
to cache the results of the fingerprint comparison.
The problem with caching is that if someone
manages to change the on-disk version of the
executable after the fingerprintvauation result
has been cached then the kernel will happily run
the modified file. This is not such a big problem
for direct attached storage because thimdl has
control over the access to the storage but for
things like NFS or @en SAN attached storage the
control over write access can no longer be guaran-
teed. ©r the initial implementation oferiexec |
took the viev that to use verified xec the
machine must only a drect attached storage.
This restriction may be able to be lifted by a
method described laterThe NetBSD lrnel
sources were modified to implement the idea and
measurements performed toaleiate the perfor
mance impact.Without caching the fingerprint
evduations a mad of the NetBSD kernel took 1.7
times longer to finish, a very large performance
hit. With caching the fingerprintvaluations there
was a 5% ncrease in the time it took to meathe
kernel which is a considerable immeament wer

the non-caching performance. This code was sub-
sequently committed to the NetBSD kernel tree
and becamevailable for general use.



Current State

Over the years theevifiedexec code has
undegone some refinements and grown some
capabilities that were novalable in the original
commit. The performance was impved by
switching the in-kernel list of fingerprints from a
simple list to a hash of lists which reduces the fin-
gerprint lookup time. The tool used to load the
fingerprints, ‘eriexecctl, gained the capability to
read back the in-kernel fingerprint listhe in-
kernel code was modified slightly to be less
instrusive an unrelated kernel structures. Also, a
convenience script \&s deeloped that builds a list
of fingerprints by scanning the file systems on the
machine, this alls a user to quickly bootstrap a
running configuration.

To run \eriexec you need a kernel that has
the support code compiled in, this requiresea k
nel config file with the following:

opt i ons FI LEASSCC
pseudo- devi ce veri exec

There are options to select what fingerprint
methods are supported by the kernedyiexec
supports RMD160, SHA256, SHA384, SHA512,
SHA1 and MD5. Taking out fingerprint methods
has very little impact on the size of the kernel, the
facility is there more for compliance.The
removal of a fingerprint option from the denel
configuration ensures that a fingerprint method
that may be considered insecure in some ctste
(e.g. MD5 due to the ability to produce collisions)
cannot be inadvertantly used.

To generate a file of fingerprints suitable for
loading usingveri execct| the user can run
theveri execgen program. Itis not mandatory
to do so, one can generate the file completely
from scratch if so desired. The fingerprint file has
the format:

pathtypefingerprint flags

Where the fields mean the following:

path Theabsolute path to the file

type Thefingerprinting algorithm used for the
file

fingerprint
The fingerprint for the file generated using
a tool likecksum

flags Acomma separated list of options includ-
ing direct, indirect, file and untrustedror
the sak of brevity | won't detail what all
these flags meanPlease refer to theew
iexec man pages for the documentation on

these flags.

Although, at this point, | wuld like to
highlight the diference between the direct and
indirect flags as the purpose of these flags do
not seem to be widely understood. When coding
the \eriexec modification | obsergd that path in
the kernel that a binaryxecutable took was dif-
ferent to that of a shell scripecution. For a
binary the ®ec is fairly straightforward, xec
does some checks and then sets up the frarke
for the binary to starbecuting. For a shell script
exec agan performs some checks, finds that the
candidate is actually a shell script so the script is
examined for the shell interpreter which is
executed and the contents of the script fed to the
interpreter This difference in path ales a
binary being used as a shell interpreter to be
treated differently to one that is beingeeuted
from an interactie shell. Thisis the purpose of
the direct and indirect flags. If a file is marked as
direct then recution of the file is permitted from,
for example, an interagg dell. If a file is
marked as indirect thenxecution of the file is
denied from an interae dell but the file may
be used as an interpreter for a shell scrifis
means that the administrator could install, for
example, perl and flag the perl binary as indirect
to veriexec. Thiswould allov the users to run a
set of perl scripts that taa fingerprints but &r-
iexec would dely any datempts to imoke perl
from the command line.

Once the fingerprint file has been generated
and modified to suit local operational needs it can
be loaded into the kernel using theri exec-
ctl command. Wth the fingerprints loadedey-
iexec can be put into operation by usisgsct |
to set theker n. veri exec. strict attribute.
Thestri ct attribute can set to one of fouakv
ues. Thesevalues are in the order of most per
missive © most restrictie ae:

0 Known as learning modeAllows the mod-
ification of the in-kernel fingerprints, \gs
verbose information about fingerprint mis-
matches, incorrect access and other things
that may cause problems at higker i ct
levels.

1 Known as IDS mode. Access to files with
mismatched fingerprints is deniedVrites
to files in the fingerprint list are alied,
ary cached fingerprint \@uation will be
flushed in this caseThe access type is not
enforced which means that files with the
flag of “file" are able to be xecuted,



assuming the fingerprint matche§ome
other rules around wadisk access too.

2 Known as IPS mode. All the prous le/-
els rules apply In addition, all writes are
prevented to fingerprinted files,xecution
of non-fingerprinted files is denied andvra
disk access to media holding fingerprinted
files is denied.The access type is enforced.
Access to kernel memory is denied.

3 Known as Lockdan mode. All the pre-
ous levels rules apply In addition, access
to non-fingerprinted files is deniedNrite
access is only alleed on file descriptors
opened before this mode wasvoked.
New files cannot be createdRaw disk
access is denied.

For general use most peopleould run \er-
iexec a strict level 2 but would use leels O
and 1 to refine and ded the fingerprint list with-
out causing an embarressing lockout by failing to
include a critical binary in the fingerprint list.

Future

There are some features that could be added
to veriexec to improve its usage in some applica-
tions. Thefirst one is an impnement in the han-
dling of the untrusted flag. This flag is meant to
flag to \eriexec that the storage that holds the file
in question is not under direct control of therk
nel and could possibly be modified without detec-
tion by the lernel. Whenthe untrusted flag is
used then eriexec will force an &aluation of the
files fingerprint for gery access in an attempt to
detect a modified fileThe obvious problem with
doing this is the performance impacit bthe more
subtle problem is thatven evaluating the finger
print every time the file is accessed will not pro-
vide protection in all caseslhe reason for this is
that fingerprints are not checked when parts of the
file are paged in so if there is a long running
binary sourced from untrusted storage an a#iack
could orerwrite the binary and then flush yan
pages associated with the binary from memory
Flushing cached pages is avial operation if the
attacler has a login to the machine, ytean sim-
ply use mmap to do the jobf the attacker does
not hare drect access then resource starving the
machine deliberately would accomplish the same
thing. Oncethe pages are flushed the attacker can
force the binary don a path of ®ecution that
causes the pager to pull in the modified part of the
binary without detection. Though this scenario
does sound unlikely | lva devdoped a proof of

concept of this attack and it doesonk as
described. @ protect against this attack therk
nel needs to check each page as it is xetti¢o
ensure it has not been modifiedhe problem
with precalculating the fingerprint for each page
in a file is that it would makthe fingerprint file
large, unwieldy and difficult to maintainA sim-
pler solution is to keerage the fact that the entire
file is already being read in teatuate the finger
print. If the fingerprint for each page igakiated

at the same time as the entire file is being obeck
then the page fingerprints can beiltbdynami-
cally. If they fingerprint for the entire file
matches then we kmothat the page fingerprints
are valid and can be usetf. the file fingerprint
does not match then the page fingerprints are
destrged as thgtoo are inalid. Thepager code

in the lernel can then be modified to validate the
fingerprint of a page being brought in from stor
age where necessaryhis solution was imple-
mented and it does prent the proof of concept
exploit code from functioning.At the moment
this code is not in the NetBSD kernel tree because
concerns were raised by othervelepers about
the way in which some of the underlying pager
code was merged into a common functidiese
concerns need to be addressed before doitity
can me made widelyailable.

Another possible extension is to pre-load
fingerprints for critical start up filesAt the
moment ‘eriexec will only come into effect once
the rc scripts ha loaded the fingerprint tables
and raised the strictvel. This leaves a window
of opportunity which could be exploited as the
machine boots, by king a fingerprint list bilt
into the lernel critical files could be protected
from boot.

| have also considered signing the finger
print entries which would mak unauthorised
modification of the fingerprint list more #dult
and, possiblydlow for fingerprints to be loaded
at ary time. Themajor stumbling block for the
feature vas the lack of a BSD licence crypto
framework. Thisblock has been remed by the
importation of the netpgp library so it ismdea-
sible to implement this featuréAnother applica-
tion that could use crypto in conjunction witary
iexec is the signing of eecutables. Thideature
has been implemented by another NetBSixlde
oper and wrks as expected, this feature is not yet
in the official tree.



Conclusion

Certainly verifiedexec is mot for everyone.
Using it on a general avkstation would present
mary difficulties to to the inability to create and
run nev programs. ltis intended more for situa-
tions where the machine configuration is more
stable and assurance of the trusted computing
base is desiredApplications could be such things
as firevalls, DMZ infrastructure or wen kiosk
machines where the build of the machine does not
change often and it is highly desirable tovers
an attacker setting up undesirable applications
such as root kits.



