
Verifiedexec: An Introduction

Brett Lymn

Introduction

The verifiedexec feature has been in the NetBSD kernel since late 2002 and is designed to provide a
method of ensuring that the binary that is being run, and the underlying shared library files, have not been
tampered with. It can detect the difference between an executable being directly executed by the shell and
one being used as a shell interpreter in a shell script.This means different behaviours can be applied to an
executables direct invocation vs one being used as a shell interpreter. Verifiedexec not only covers executa-
bles but also handles arbitrary files, this allows not only the shared libraries that executables may rely on to
be protected but also gives the opportunity to protect files such as configuration files from tampering.

This paper will discuss the history of verifiedexec, where it is at in the current version of NetBSD and
some possible features that could be added in the future.

Origins

Late in the last millenium there was a dra-
matic rise in the number of attacks using either
trojan horses or root-kits reported on mailing lists
such as Bugtraq.Whilst reading these reports I
started to wonder why the kernel was being so
cooperative in running whatever random
executable that it was fed and if there could be a
way of allowing known good executable to run
but refuse to run one that have either been tam-
pered with (a trojan horse) or one that had been
installed to perform a malicious function (a root-
kit). I felt that techniques using available at the
time such as file attributes and mount permissions
were difficult to correctly implement and a single
error in the set up could leave the machine vulner-
able or that conflicting requirements for some
paths may require compromises that reduce the
security of the configuration. There were pro-
grams such as tripwire that would scan the file
system for modifications but these ran at userlevel
and were vulnerable to such as shimming libraries
to hide a root-kit by presenting unmodified files
when a scan was run.With this in mind I started
thinking about how the kernel could tell if an
executable was one that it should run or not.I
thought that if the kernel kept a list of fingerprints
and then evaluated the fingerprint of an
executable prior to execution then we could tell if
the file has been tampered with. The major con-
cern I had with this approach was that the

performance would be poor since every time
something was executed the fingerprint would be
evaluated. Not only would this break demand
paging due to the entire excutable file being read
in every time but would also create an overhead
simply by performing the fingerprinting opera-
tion. To avoid the performance impact I decided
to cache the results of the fingerprint comparison.
The problem with caching is that if someone
manages to change the on-disk version of the
executable after the fingerprint evaluation result
has been cached then the kernel will happily run
the modified file.This is not such a big problem
for direct attached storage because the kernel has
control over the access to the storage but for
things like NFS or even SAN attached storage the
control over write access can no longer be guaran-
teed. For the initial implementation of veriexec I
took the view that to use verified exec the
machine must only have direct attached storage.
This restriction may be able to be lifted by a
method described later. The NetBSD kernel
sources were modified to implement the idea and
measurements performed to evaluate the perfor-
mance impact.Without caching the fingerprint
evaluations a make of the NetBSD kernel took 1.7
times longer to finish, a very large performance
hit. With caching the fingerprint evaluations there
was a 5% increase in the time it took to make the
kernel which is a considerable improvement over
the non-caching performance. This code was sub-
sequently committed to the NetBSD kernel tree
and became available for general use.



-2-

Current State

Over the years the verifiedexec code has
undergone some refinements and grown some
capabilities that were not available in the original
commit. The performance was improved by
switching the in-kernel list of fingerprints from a
simple list to a hash of lists which reduces the fin-
gerprint lookup time. The tool used to load the
fingerprints, veriexecctl, gained the capability to
read back the in-kernel fingerprint list.The in-
kernel code was modified slightly to be less
instrusive on unrelated kernel structures. Also, a
convenience script was developed that builds a list
of fingerprints by scanning the file systems on the
machine, this allows a user to quickly bootstrap a
running configuration.

To run veriexec you need a kernel that has
the support code compiled in, this requires a ker-
nel config file with the following:

options FILEASSOC

pseudo-device veriexec

There are options to select what fingerprint
methods are supported by the kernel, veriexec
supports RMD160, SHA256, SHA384, SHA512,
SHA1 and MD5. Taking out fingerprint methods
has very little impact on the size of the kernel, the
facility is there more for compliance.The
removal of a fingerprint option from the kernel
configuration ensures that a fingerprint method
that may be considered insecure in some contexts
(e.g. MD5 due to the ability to produce collisions)
cannot be inadvertantly used.

To generate a file of fingerprints suitable for
loading usingveriexecctl the user can run
theveriexecgen program. Itis not mandatory
to do so, one can generate the file completely
from scratch if so desired. The fingerprint file has
the format:

path type fingerprint flags

Where the fields mean the following:

path Theabsolute path to the file

type Thefingerprinting algorithm used for the
file

fingerprint
The fingerprint for the file generated using
a tool likecksum

flags A comma separated list of options includ-
ing direct, indirect, file and untrusted.For
the sake of brevity I won’t detail what all
these flags mean.Please refer to the ver-
iexec man pages for the documentation on

these flags.

Although, at this point, I would like to
highlight the difference between the direct and
indirect flags as the purpose of these two flags do
not seem to be widely understood. When coding
the veriexec modification I observed that path in
the kernel that a binary executable took was dif-
ferent to that of a shell script execution. For a
binary the exec is fairly straightforward, exec
does some checks and then sets up the framework
for the binary to start executing. For a shell script
exec again performs some checks, finds that the
candidate is actually a shell script so the script is
examined for the shell interpreter which is
executed and the contents of the script fed to the
interpreter. This difference in path allows a
binary being used as a shell interpreter to be
treated differently to one that is being executed
from an interactive shell. This is the purpose of
the direct and indirect flags. If a file is marked as
direct then execution of the file is permitted from,
for example, an interactive shell. If a file is
marked as indirect then execution of the file is
denied from an interactive shell but the file may
be used as an interpreter for a shell script.This
means that the administrator could install, for
example, perl and flag the perl binary as indirect
to veriexec. Thiswould allow the users to run a
set of perl scripts that have fingerprints but ver-
iexec would deny any attempts to invoke perl
from the command line.

Once the fingerprint file has been generated
and modified to suit local operational needs it can
be loaded into the kernel using theveriexec-
ctl command. With the fingerprints loaded ver-
iexec can be put into operation by usingsysctl
to set thekern.veriexec.strict attribute.
Thestrict attribute can set to one of four val-
ues. Thesevalues are in the order of most per-
missive to most restrictive are:

0 Known as learning mode.Allows the mod-
ification of the in-kernel fingerprints, gives
verbose information about fingerprint mis-
matches, incorrect access and other things
that may cause problems at higherstrict
levels.

1 Known as IDS mode. Access to files with
mismatched fingerprints is denied.Writes
to files in the fingerprint list are allowed,
any cached fingerprint evaluation will be
flushed in this case.The access type is not
enforced which means that files with the
flag of "file" are able to be executed,



-3-

assuming the fingerprint matches.Some
other rules around raw disk access too.

2 Known as IPS mode. All the previous lev-
els rules apply. In addition, all writes are
prevented to fingerprinted files, execution
of non-fingerprinted files is denied and raw
disk access to media holding fingerprinted
files is denied.The access type is enforced.
Access to kernel memory is denied.

3 Known as Lockdown mode. All the previ-
ous levels rules apply. In addition, access
to non-fingerprinted files is denied.Write
access is only allowed on file descriptors
opened before this mode was invoked.
New files cannot be created.Raw disk
access is denied.

For general use most people would run ver-
iexec at strict level 2 but would use levels 0
and 1 to refine and debug the fingerprint list with-
out causing an embarressing lockout by failing to
include a critical binary in the fingerprint list.

Future

There are some features that could be added
to veriexec to improve its usage in some applica-
tions. Thefirst one is an improvement in the han-
dling of the untrusted flag. This flag is meant to
flag to veriexec that the storage that holds the file
in question is not under direct control of the ker-
nel and could possibly be modified without detec-
tion by the kernel. Whenthe untrusted flag is
used then veriexec will force an evaluation of the
files fingerprint for every access in an attempt to
detect a modified file.The obvious problem with
doing this is the performance impact but the more
subtle problem is that even evaluating the finger-
print every time the file is accessed will not pro-
vide protection in all cases.The reason for this is
that fingerprints are not checked when parts of the
file are paged in so if there is a long running
binary sourced from untrusted storage an attacker
could overwrite the binary and then flush any
pages associated with the binary from memory.
Flushing cached pages is a trivial operation if the
attacker has a login to the machine, they can sim-
ply use mmap to do the job. If the attacker does
not have direct access then resource starving the
machine deliberately would accomplish the same
thing. Oncethe pages are flushed the attacker can
force the binary down a path of execution that
causes the pager to pull in the modified part of the
binary without detection. Though this scenario
does sound unlikely I have dev eloped a proof of

concept of this attack and it does work as
described. To protect against this attack the ker-
nel needs to check each page as it is retrieved to
ensure it has not been modified.The problem
with precalculating the fingerprint for each page
in a file is that it would make the fingerprint file
large, unwieldy and difficult to maintain.A sim-
pler solution is to leverage the fact that the entire
file is already being read in to evaluate the finger-
print. If the fingerprint for each page is evaluated
at the same time as the entire file is being checked
then the page fingerprints can be built dynami-
cally. If they fingerprint for the entire file
matches then we know that the page fingerprints
are valid and can be used.If the file fingerprint
does not match then the page fingerprints are
destroyed as they too are invalid. Thepager code
in the kernel can then be modified to validate the
fingerprint of a page being brought in from stor-
age where necessary. This solution was imple-
mented and it does prevent the proof of concept
exploit code from functioning.At the moment
this code is not in the NetBSD kernel tree because
concerns were raised by other developers about
the way in which some of the underlying pager
code was merged into a common function.These
concerns need to be addressed before this facility
can me made widely available.

Another possible extension is to pre-load
fingerprints for critical start up files.At the
moment veriexec will only come into effect once
the rc scripts have loaded the fingerprint tables
and raised the strict level. This leaves a window
of opportunity which could be exploited as the
machine boots, by having a fingerprint list built
into the kernel critical files could be protected
from boot.

I hav e also considered signing the finger-
print entries which would make unauthorised
modification of the fingerprint list more difficult
and, possibly, allow for fingerprints to be loaded
at any time. Themajor stumbling block for the
feature was the lack of a BSD licence crypto
framework. This block has been removed by the
importation of the netpgp library so it is now fea-
sible to implement this feature.Another applica-
tion that could use crypto in conjunction with ver-
iexec is the signing of executables. Thisfeature
has been implemented by another NetBSD devel-
oper and works as expected, this feature is not yet
in the official tree.



-4-

Conclusion

Certainly, verifiedexec is not for everyone.
Using it on a general workstation would present
many difficulties to to the inability to create and
run new programs. Itis intended more for situa-
tions where the machine configuration is more
stable and assurance of the trusted computing
base is desired.Applications could be such things
as firewalls, DMZ infrastructure or even kiosk
machines where the build of the machine does not
change often and it is highly desirable to prevent
an attacker setting up undesirable applications
such as root kits.


