Automated testing of the Curseslibrary

Brett Lymn

Introduction

The curses library is a library that provides a terminal independent method of updating a terminal
screen. lialso provides optimisation of the screen update in an attempt to minimise the number of charac-
ters sent to the screerit is a compl& and subtle piece of sofmve. Whenmaking modifications it is
always difficult to ensure that the modifications do not affect the operation of the curses library as a whole.
One method to ensure that unintended effect from changes are detected is to use some form of automated

testing to gercise the code. The NetBSD tree has a testing frammkecalled atf(1) which is used to test
various portions of the code tree. One part of the tree thatnet being tested was the curses libraiyis
paper describes the approachetako perform testing of the curses library functions in a flexible and

straightforward manner.

Inception

Making modifications to the internals of
curses is abay difficult because changes in the
beheiour of the library may not be immediately
visible but, rathermay cause aberrations that are
difficult to reproduce in simple usagBreviously,
curses testing amounted to firing up a curses
based application such as vi(1) and seeing if
things "looked right" which, in realitydoes not
exagcise much of the curses library at all.
Another test method is writing a specific test-
frame to eercise some ne code which is ery
ad-hoc and specific for a single tas®nce the
code was wrking to the creators liking the test
code was discarded which meant theeswo on-
going testing of the functionality Both these
approaches la resulted in bugs being intro-
duced which were not detected for some time and
when the bugs did appear yhmanifested them-
selhes in emironments that were extremely fiif
cult to delng. Clearlythere was a need to e
some method to attempt to deteagb or beha
iour changes early to prent such situations aris-
ing.

In 2007 a Google Summer of Code project
mentored by NetBSD created an automated test
framework which could perform automatic testing
of subsystems in a controlled mannerhis
project was imported into the NetBSD tree and
work began on generating tests that could be run
as part of a igular huild. Build seners hae keen

set up that continuously ubd and test the
NetBSD sources. These build sery can praide

fast feedback not only when a build is broken by a
commit hut also if a commit causes the automated
tests to &il. By providing fast feedback the win-
dow of commits that could h&e aused the prob-
lem is much narmger which simplifies the task of
finding the modification that caused the problem.
It was clear that adding the curses library into the
automated test fram®rk would be beneficial to
the project by ensuring that the curses library is
continuously tested and yarregessions found
rapidly. The challenge was loto properly auto-
mate the testing of all the curses functionality
Curses has functions that perform timed reads and
return errors if a character has not been seen
within a specified time outlt can also assemble
multiple input characters into a symbolieykrep-
resentation as the amwdkeys, for example, tend to
send a multiple character string to represent an
arrov key press. Bothof these facilities mak it
difficult to simply pipe a string of characters into
a test program because all the characters will
arrive & the input at once with no means of test-
ing a timeout. A program could be written to
pace the input to the test program but there is still
a matter of timing. In some cases there may need
to be multiple curses calls performed to set up the
correct state to test a particular function which
can add delays. The program performing the
input pacing has no indication of when the pro-
gram under test is ready to accept input.
Although atf has a timeout that will kill the mis-
behaing test the timeout is reladly long and

would cause long delays in the test rulnother
problem with simply redirecting input is that stdin
is not classified as a tty device so it bedsadf-
ferently to a tty deice. Attemptingto set termi-
nal attributes will result in an error return which
will affect some curses calls causing them to
return errors.Similarly, capturing the output from

a aurses program under test is problemaiedi-
recting or piping the output to a file also results in
stdout not being a tty device which cafeaf the
output routines of curses introducing wamed
output artifcts. Also,in some instances, curses
sets the input déce characteristics using an ioctl
that waits for the output to be drained to ensure
output sent prior to the ioctl is not affected by the
change in device characteristicBhis means that
output must be drained promptly otherwise the
program under test will stallFinally, generating
test cases should be as simple and flexible as pos-
sible to allav the quick deelopment of ner tests
that are able to properlyercise the capabilities
of the curses library To resole the preiously
mentioned difficulties it ws decided to use a
pseudo-tty interface (pty) to priole a terminal
interface to the curses program under teghis
required a master program that could not only
provide input, if required, to the test programt b
would also capture the output from the test pro-
gram in a timely manner to pent the test pro-
gram from stalling. A possible approach euld

be to deelop a specific test program for each
facet of curses that needed to be testedthis
would involve writing a lot of repetitre code and
the problem of coordinating input ould still
remain.

I mplementation

To resohe dl these difficulties it vas
decided to use a single test program, called the
slave, this slare program is capable of running
ary curses function with arguments provided by
the master program called the directdhe slae
and director are connected via a pseudo-tty-inter
face to provide the correct tty semantics required
by curses. The taprocesses are also connected
by two pipes, one pipe allows the director to pass
commands and arguments to thevslfor execu-
tion. Anotherpipe allows the sl& b pass back
the return status for the function along withyan
other return lues. Thelirector does the bulk of
the work, it parses a test command file using a
simple interpreter to gather the required function

to run and its arguments and passes these on to

the slxe. The director then wait for the sk

complete thexecution of the function. Since the
director and ske ae running in lock-step the
director can hee a vey short timeout for the
command eecution and so terminate a misbeha
ing test quickly The director language als
input to be defined prior to the call that is going to
require it along with inter-character timind.he
director leeps a list of curses function that require
input and will provide the pre-defined input at the
pre-defined rate when a function requiring input is
executed. Returrvalues from the ske ae read
from the return pipe and thealues are either
saved or validated for expected content,yamis-
match is flagged as an error and the test is termi-
nated. Thelirector also captures yaoutput from

the slae, originally the thought was to simply
capture and compare output data when routine
that caused screen output were called butais w
found that stalled the sla pocess due to curses
calling ioctls that waited for the output to drain
before making changesGiven this, the director
continuously drains output from the &aad
stores it in a dynamically allocatedfter for later
comparison. Therevents the slae from stalling
due to output backlogA directive in the director
language causes the director to compare a file
containing expected output against théfdred
slave autput and, possiblyany pending slae aut-

put. Itis an error if there is insufficient sk aut-

put but excess sta autput is flagged as aasning

by the directar Once an output comparison has
been performed gnexcess data may be dis-
carded, depending on the comparison divecti
used. Atest only passes if all return values for all
functions match their expectedalues and, if
appropriate, the expected output data matches the
data stream produced by thevela

Test Language

The director test files are parsed using a
simple custom interpreterThe language alies
defining and later using variables, it is loosely
typed the type being determined at assigment
time. Thereare only tvo types supported, strings
(though there are aMiestring sub-types) and inte-
gers. Stringssupport a some character substitu-
tions to permit @lues useful to curses testing to
be performed, these substitutions are:

\e escape
\n navline
\\ the\ character

\nnn Thecharacter represented by the octal num-
ber nnn

Depending on what quotes enclose the string
defines hw the string is treatedA plain, ordi-
nary, gring is enclosed in double quotes ("), this
string will be null terminated An array of char
acters is enclosed in single quotes (') this array
will not be null terminated and may containyan
character &lue. Anarray of the curses chtype
which is a pair of of bytes, the first byte being the
character attrintes and the second being the
actual character is enclosed in back-ticks ().
Integers may be expressed in decimal (no prefix)
or hexadecimal (prefixed with 0x) Variables are
defined when first assigned, the only requirement
for a \ariable is that is start with a alphabetic
character Once defined a variable can be refer
ence by prefixing theariable name with a dollar
sign ($). Both integers and variables holding inte-
gers may be logically or'ed together by enclosing
the list in parentheses (()) and separating the list
members with a vertical bar (|Yhis is handy for
combining bit values such as character attributes.

As mentioned prgously, the director uses
a dmple interpreted language to determine the
steps imolved in performing a test. The language
directives ae:

assign
Assign a value to a variable

call Call a arrses function, expect only one

return value
call2 Like all but expect tw return values
call3 Like all but expect three return values
call4 Like aall but expect four return values

check
Validate a variable against anxpected
value

compare
Compare the output from the waaanst
the contents of a file

comparend
The same as compareutbdont discard
excess output from the sla

delay
Define the inter-character delay to be
applied to an input string

include
include another command fil&his is used
to reduce the amount of repetition in test
files by including commonlyxecuted sec-
tions. Therds a fixed, compile time, limit
to the number of nested include fileShe
limit is arbitrary and set to 32 at the

moment. ltshould be noted that there is no

scoping of ariables so thecan be defined

and or modified in deeper nested includes
and be wailable at the top el test file and

all intermediates.
input

defines a string to be used for input when a

curses routine that reads input is called.
noinput

prevents the director from erroring if there

has not been input defined for a curses

input routine. Used if there is input pend-
ing already.

By using the abee drectives the testing of
most of the functions in curses can be acle
Initial conditions can be created by callingriv
ous curses routines in the same manner as a real
curses application euld. Oneimportant thing to
not is that the sle aitomatically calls the
initscr() function so it is not necessary for this call
to be included in antest. Thedirector expects a
fixed number of returns from the &afunction
call depending on the call thaaw performed, the
number of returns from the skais validated and
an error will be raised if there is a mismatch.
Returns can either beakdated immediately or
assigned to aariable. or immediate alidation
the following values can be used:

OK standardturses success return

ERR standardurses error return

NULL
a rull pointer has been returned

NON_NULL
a pointer that is not null valued has been
returned

An
A string

integer including a logical OR

For curses functions that return multiplelues
the returns are listed to the left of the curses func-
tion in the call statementThe rules for this are
simple, ag argument in a curses function that is a
pointer to a return is listed on the left hand side of
the function in the order tlyeappear in the origi-
nal function argument list. Ordinary function
arguments are listed on the right hand side of the
curses function name.

Below is a sample of a test script that creates a
window and prints a message into it:

include start

call winl newwin 2525 not the output is correct. As has been noted pre-
check winl NON NULL viously, the final screen appearance may be
_ deceptve & it may hide subtle errors or be ifief
cient in terms of the number of characters output.
call OK wrefresh $winl For this reason it was decided that simply captur
compare wprintw_refresh.chk ing the current output was not a good styatas
this may enshrine bugs in the code as being cor

The first line includes another tes_t f!le that rect. 1o avoid this problem the output of each test
checks the curses start up sequence, this is a set of.

. .. is analysed to ensure that the expected\betia
characters that curses sends to the terminal to ini- . . : . .
o : . is obsered. To assist with this analysis, the test
tialise it ready for use.This start sequence is .
. . director has aerbose mode that reports the out-
common to all tests so is a good candidate for

inclusion. Thesecond line is a call to the curses put s_tream in-a reada_ble format, the_up]asly
. : : mentioned readableevsion of the terminfo entry
newwin function, this call has one return, the

pointer to a winde structure. Thisreturn is also assists with interpreting _the outpulsing
.) i the \erbose mode of the test director thxpected
saved in the \ariable winl for later use. The . o .
S o . Lo o output for a test can be written this is a painstak-
third line is a validation oWinl in this case it is . .
. ing and tedious processitbdoes mean that there
checled to ensure thatewwin has not returned a : .
. . o should be lessugs in the output. By starting
NULL pointer which would indicate an error : : .
A . . ; » with tests that peform basic operations such as
Assuming that there is a valid pointeinl the

. . . o initialising the curses libraryreate windows and
director will execute the next line which is a call . .
: . . so forth a library of tests can be built that can then
to wprintw . Here the previously assigned

winl is used as a parameter wprintw to be included into more complgests which some-

specify the winda to print into along with the what eases the burden of writing tests.

other parameters for the function calfter the Currently the curses testframe does not
wprintw call thewrefresh function is called cover wide characters mainly due to the chal-
with thewinl parameter to update the terminal !enges in properly representing a wide character
with the results of the previous calls. The final In the test language. Anotheveaue for further
line compares the output stream of the test exploration is the testing of other curses based
sequence against the contents of the file libraries. Librariessuch as libform and libmenu
wprintw_refresh.chk It should be noted should be able to be tested simply by adding the
that the compare need not happen at the end of SUpport into the siee process.

the test, the output comparison can be performed

wheneer there is a need to validate output and Conclusion

can be done multiple times throughout the test.

call OK wprintw $winl “%s” “hello”

The curses testframe has been graged

To smplify the analysis of the output into the NetBSD tests tree and work is progress-
stream from the sl@ the curses testframe uses a ing, albeit slavly, on alding tests to »ercise as
special terminfo entry Normally a terminal ter mary of the curses functions as possibidready
minfo entry has terminal specific escape this work has shown fruits with a number afgis
sequences to affect the behaviour of the terminal. being found and fixd simply due to the fact of
These escape sequences arécdlif to read and the functions and output being closely scrutinised.
their meanings can be hard to determiker the Once major portion of the curses functions are
purposes of testing the curses testframe uses a ter covered by testing it opens the possiblity of
minfo entry that has capabilities that are mostly undertaking some major revations to the curses
the names of the capabilities themselves with a internals with the assurance that unintended
few exceptions. Onof the eceptions are the effects of the changes made will be detected and
arrov and function leys so ealistic sequences can the bugs fixed before the user community is
be used.Another exception is the capabilities that affected thus making NetBSD a more stable and
move the cursor a single charagttttese are a sin- reliable platform.
gle character otherwise the curses optimisation
routines will not use them since itowld deter
mine that thg would result in more characters
being output when compared to using an absolute
positioning capability The major difficulty with
writing a test for curses is determining whether or

