
BSDLUA
(in three parts)

Evolved Unix Scripting

Ivan Voras <ivoras@freebsd.org>

What is BSDLUA?

● An experimental idea
● Use Lua for projects, tools, etc. which do not

require C and would be more easily
implemented in a scripting language

● An “in between” language – low-level features
of C with integration capabilities of shell scripts

Why???

● The $1M question: what in the world would
make someone program in something which is
not /bin/sh ???

● /bin/sh is the best thing since the invention of
the bicycle... from the time when Unix
programmers had real beards...

(More specifically)

● I personally miss a “higher level” scripting
language in the base system

● In the beginning there was TCL (or so I heard...
it was before my time)

● The there was Perl...

● Both were thrown out
– For good reasons

What is wrong with shell scripts?

● Nothing … and everything
● Good sides: integration with system tools via

executing programs, sourcing other scripts
● Bad sides: … somewhat depend on personal

tastes … for me it's the syntax and lack of
modern features

● Talking about the /bin/sh POSIX shell – more
modern shells have nicer languages

Why not use /bin/sh?

● (for complex programs)
● Syntax from the 1970-ies
● No local variables
● No “proper” functions (with declared arguments)
● Need to escape strings more often than what

would sanely be expected
● Relies on external tools for common operations

(tr, grep, join, jot, awk...)
● Too much “magic” in operation

Why use Lua? (1)

● As a language:
● Nicer, modern language with lexical scoping
● Namespaces
● Dynamically and weakly typed

– NULL, boolean, number, string, “table”
● “Table” data type for many uses

– lists, records, OOP, metaprogramming
● First-class functions, closures, coroutines, tail calls
● Garbage collection, exceptions (sort of)

Why Lua might be better than
Perl and TCL

● For scripting, when compared to /bin/sh:
● It is not a shell but it has an interactive interpreter
● /bin/sh is: ~~ 15,000 LOC, 47 files
● Lua (with libs) is: ~~ 17,000 LOC, 58 files

– It is small!
● Its development is stable

– It can be imported so not to conflict with ports
● MIT Licensed (BSD-friendly)
● Easy to embed to and from C!

About Lua

● Means “The Moon” in Portuguese
(and other Romance languages,
cf. Latin “Luna”, English “Lunatic”)

● Originally an academic project
● Hugely successful as a general-

purpose scripting language
– Popular in gaming industry for story

and game logic scripting!
– Also used in: Wireshark, Vim,

Apache, lighttpd, VNC and others

(Brasilian)

How does Lua look like?

tbl = { x = "Free", y = "BSD" }
for k,v in pairs(tbl) do print(k,v) end
-- this is a comment
print(string.format("%s\t%s", tbl.x, tbl.y))

● Not very sigil-dependant (@#%${}!)
● Functions can return more than 1 value
● for … do … end
● if … then … else … elseif … end
● Built-in “foreach” statement
● “-- …” are single-line comments

Lua's standard library

● math: trig. functions, sqrt, pow, log, random...
● table: table functions: array slices, sorting...
● string: slicing, upper / lower, regexp...
● io: simple file IO: open, read, write...
● os: *very* basic OS functions: time, getenv...
● debug: introspection, profiling

Advanced example

function _range(n)
 local x
 for x = 1,n do coroutine.yield(x) end
end
-- Python-like range() function
function range(n)
 return coroutine.wrap(
 function () _range(n) end)
end
for x in range(10) do print(x) end

Extending Lua

/**

 * Records a message in the system's syslog.

 */

static int

bsd_syslog(lua_State *L)

{

if (!lua_isnumber(L, 1) || !lua_isstring(L, 2))

luaL_error(L, "Argument error. Expecting integer priority and "

 "message string");

syslog(lua_tointeger(L, 1), lua_tostring(L, 2));

return (0);

}

Lua's stacks

● Interfaces to C use “virtual stacks”
● (more like a list with random access than a

stack, negative indices possible: -1=top)
● First function argument is S(1), second S(2)...
● Returning values from C: lua_pushnumber(42)
● Creating tables:

– lua_newtable()
– lua_pushnumber(X)
– lua_setfield(L, -2, “fieldname”)

Extending Lua – an example

/**

 * Records a message in the system's syslog.

 */

static int

bsd_syslog(lua_State *L)

{

if (!lua_isnumber(L, 1) || !lua_isstring(L, 2))

 luaL_error(L, "Argument error. Expecting integer priority and "

 "message string");

syslog(lua_tointeger(L, 1), lua_tostring(L, 2));

return (0);

}

Boilerplate C declaration

Validate arguments

Error / exception (doesn't return)

Fetch arguments and call syslog(3)Number of returned values

Where to find Lua?

● On the Internet, here:
– www.lua.org

● A large community with a good track record
● Lua's progress in time:

– First version: 1993.
– Lua 2.0 – 1994., Lua 3.0 1997., Lua 4.0 2000.
– Lua 5.0 2003.
– Lua 5.1 2006.
– (Lua 5.2 in 2011?)

(most recent: 5.1.4, 2008.)

Lua and FreeBSD?

● Maybe, if enough people get interested
● Lua is smaller and easier to maintain than:

– TCL
– Perl
– Python
– Ruby
– …

● If it would stop people writing large projects in
shell, that would be its biggest success :)

End of part one

● … which introduced Lua
– Motivation
– What is Lua?
– How does it look like?
– Why is Lua a good (or at least good enough)

choice for scripting?

Questions?

BSDLUA ?

● My pet project
● “Lua extended with common OS-level functions

and constants usable for shell scripting”
● 100% Lua-compatible, language is not modified
● Only addition: added a “stdlib.lua” script with

some common code available to all scripts, etc.
● “Evolved” scripting: uses OS-level functions, not

only generic OS-independed ones
● “BSD”LUA: a large part is cross-BSD

The big picture

● The goal is to make a scripting environment
friendly for both C and shell programmers and
enable them to be productive while also
introducing a better language

● Is it a reasonable goal?
– Yes: a relatively low learning curve, most power

retained from shell scripts (+ ???)
– No: we already have C and /bin/sh so is it worth

the trouble? (+ ???)

The concept

● BSDLUA consists of roughly three parts:
– libc wrappers

Offer some of the most commonly used libc
functions and syscalls

– utility / shell-like functions
Add some convenient shell-like functionalities (file
testing, program execution and inspection)

– FreeBSD-specific libraries
Implement wrappers for some useful FreeBSD
system libraries (libkvm, libgeom, ...?)

libc wrappers

● Same names and semantics as libc symbols,
Lua-adapted types

● Divided into two namespaces: posix and bsd.
– “posix” contains standard POSIX calls
– “bsd” contains “everything else”
– Not necessarily a good idea, I'm considering

folding them all into “unix” namespace
● What are the most common functions? Some

analysis is probably in order...
– stat(), getenv(), open(), read(), write(), chdir()

stat(2) example

● Example: stat() call in Lua:

st = posix.stat(“file.lua”)
print(table.tostring(st))
print(st.st_size)

print(posix.stat(“file.lua”).st_size)

stat(2) example

● Example: stat() call in Lua:

st = posix.stat(“file.lua”)
print(table.tostring(st))
print(st.st_size)

print(posix.stat(“file.lua”).st_size)

BSDLUA call Returned value is a table

Unix / shell-like functions

● Namespace “shell”
● The idea is to make the “usual suspects” in

programming easier … like “normal” scripting
languages

● “if [-r $FILE]” → “shell.r_ok(file)”
– By analogy with access(2)

● Backticks → function shell.ss()
– By analogy with system(3), with a shorter name

● Ideas welcome...

Shell-to-BSDLUA example

If CONFFILE was specified at the command-line, make

sure that it exists and is readable.

sanity_conffile() {

 if [! -z "${CONFFILE}"] && [! -r "${CONFFILE}"]; then

 echo -n "File does not exist "

 echo -n "or is not readable: "

 echo ${CONFFILE}

 exit 1

 fi

} (from portsnap)

Shell-to-BSDLUA example

-- If CONFFILE was specified at the command-line, make

-- sure that it exists and is readable.

function sanity_conffile(conffile)

if string.len(conffile) ~= 0 and not shell.r_ok(conffile) then

print("File does not exist or is not readable: " .. conffile)

posix.exit(1)

end

end

Caveats

● Lua strings are 1-indexed (not 0 as in C)
● Lua “not equal” is “~=” not “!=”
● String concatenation is “..”, addition is “+”

– 1 + “1” == 2
– 1 .. “1” == “11”

● 1-line comments begin with “--”
– Multi-line comments are strange “--[[…\n…]]--”

● It is its own language...

FreeBSD-specific libraries

● libcurses – terminal drawing
● Planned for “really soon now”:

– libgeom – FreeBSD's GEOM information
– libkvm – kernel introspection
– The plan: make BSDLUA good enough so that

system utilities can be created in it
– And then: create some demo utilities like a

curses-based fdisk

Future plans

● Finish libc wrappers, shell utility functions
● Implement more FreeBSD-specific libraries
● Make proof-of-concept reimplementation of

some FreeBSD utilities
● Start advertising it more...

End of part two

● ...which introduced BSDLUA
● Input required from the audience!

– Overall – is it a good idea?
– What calls / functions to implement next?
– Style – what about posix/bsd namespaces?
– Of course, interested developers can join!

Questions?

Why Lua could succeed where
Perl failed?

● Small
● Can be maintained separately from the ports

version, no conflicts with the ports version
● Much slower development of core language

features (a couple of versions in a decade)
● Very easy to extend with wrappers of C

functions
● Very easy to extend C programs with Lua

scripting

BSDLUA for developers

● “Do not ask what you can do for Lua, ask what
Lua can do for you”

● What problems or smaller issues can it solve for
the developers?

● What could it offer to users?

For userland developers

● An “in-between” language
– Access to more low-level features than shell
– More enjoyable to program in than shell code

● Embedding C in Lua
– To extend with functionalities, syscalls, etc.
– To make it a glue language more powerful than

shell code
● Embedding Lua in C

– Add scripting functionality to C programs
● (both directions are easy)

(For kernel developers)

● ???
● Make your syscalls easily available to shell-like

environment
● Solaris and Python...? ZFS utilities...?

For users and administrators

● If it's in the base system, you can depend on it
being there

● Much less steep learning curve than shell code
● Convenient
● Peace on Earth, world domination of BSD and

all other good things...

Possible (current) use cases for
Lua in base

● Making some larger shell scripts less complex
– Including maybe some in /etc/rc.d

● Scripting the package management system
● Scripting the installer
● Scripting other programs with complex user

interactions (hastd? (u)carp? devd?)

Effectively embedding Lua
support in a C program

● Create a Lua state structure
● Create a Lua environment, populate it with:

– Constants and variables
– Functions important to your program which you

want to be used from Lua
– Objects, tables, etc.

● Execute a Lua snippet (a file, a string) in this
Lua context

● Profit !!!

The End

BSDLUA

ivoras@freebsd.org

Looking for opinions, ideas, co-developers...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

