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What is BSDLUA?

● An experimental idea
● Use Lua for projects, tools, etc. which do not 

require C and would be more easily 
implemented in a scripting language

● An “in between” language – low-level features 
of C with integration capabilities of shell scripts



 

 

Why???

● The $1M question: what in the world would 
make someone program in something which is 
not /bin/sh ???

● /bin/sh is the best thing since the invention of 
the bicycle... from the time when Unix 
programmers had real beards...



 

 

(More specifically)

● I personally miss a “higher level” scripting 
language in the base system

● In the beginning there was TCL (or so I heard... 
it was before my time)

● The there was Perl...

● Both were thrown out
– For good reasons



 

 

What is wrong with shell scripts?

● Nothing … and everything 
● Good sides: integration with system tools via 

executing programs, sourcing other scripts
● Bad sides: … somewhat depend on personal 

tastes … for me it's the syntax and lack of 
modern features

● Talking about the /bin/sh POSIX shell – more 
modern shells have nicer languages



 

 

Why not use /bin/sh?

● (for complex programs)
● Syntax from the 1970-ies
● No local variables
● No “proper” functions (with declared arguments)
● Need to escape strings more often than what 

would sanely be expected
● Relies on external tools for common operations 

(tr, grep, join, jot, awk...)
● Too much “magic” in operation



 

 

Why use Lua? (1)

● As a language:
● Nicer, modern language with lexical scoping
● Namespaces
● Dynamically and weakly typed

– NULL, boolean, number, string, “table”
● “Table” data type for many uses

– lists, records, OOP, metaprogramming
● First-class functions, closures, coroutines, tail calls
● Garbage collection, exceptions (sort of)



 

 

Why Lua might be better than 
Perl and TCL

● For scripting, when compared to /bin/sh:
● It is not a shell but it has an interactive interpreter
● /bin/sh is: ~~ 15,000 LOC, 47 files
● Lua (with libs) is: ~~ 17,000 LOC, 58 files

– It is small!
● Its development is stable

– It can be imported so not to conflict with ports
● MIT Licensed (BSD-friendly)
● Easy to embed to and from C!



 

 

About Lua

● Means “The Moon” in Portuguese
(and other Romance languages,
cf. Latin “Luna”, English “Lunatic”)

● Originally an academic project
● Hugely successful as a general-

purpose scripting language
– Popular in gaming industry for story 

and game logic scripting!
– Also used in: Wireshark, Vim, 

Apache, lighttpd, VNC and others

(Brasilian)



 

 

How does Lua look like?

tbl = { x = "Free", y = "BSD" } 
for k,v in pairs(tbl) do print(k,v) end
-- this is a comment
print(string.format("%s\t%s", tbl.x, tbl.y)) 

● Not very sigil-dependant (@#%${}!)
● Functions can return more than 1 value
● for … do … end
● if … then … else … elseif … end
● Built-in “foreach” statement
● “-- …” are single-line comments



 

 

Lua's standard library

● math: trig. functions, sqrt, pow, log, random...
● table: table functions: array slices, sorting...
● string: slicing, upper / lower, regexp...
● io: simple file IO: open, read, write...
● os: *very* basic OS functions: time, getenv...
● debug: introspection, profiling



 

 

Advanced example

function _range(n) 
  local x 
  for x = 1,n do coroutine.yield(x) end 
end 
-- Python-like range() function
function range(n) 
  return coroutine.wrap(
                 function () _range(n) end) 
end 
for x in range(10) do print(x) end 



 

 

Extending Lua

/**

 * Records a message in the system's syslog.

 */

static int

bsd_syslog(lua_State *L)

{

if (!lua_isnumber(L, 1) || !lua_isstring(L, 2))

luaL_error(L, "Argument error. Expecting integer priority and "

    "message string");

syslog(lua_tointeger(L, 1), lua_tostring(L, 2));

return (0);

}



 

 

Lua's stacks

● Interfaces to C use “virtual stacks”
● (more like a list with random access than a 

stack, negative indices possible: -1=top)
● First function argument is S(1), second S(2)...
● Returning values from C: lua_pushnumber(42)
● Creating tables:

– lua_newtable()
– lua_pushnumber(X)
– lua_setfield(L, -2, “fieldname”)



 

 

Extending Lua – an example

/**

 * Records a message in the system's syslog.

 */

static int

bsd_syslog(lua_State *L)

{

if (!lua_isnumber(L, 1) || !lua_isstring(L, 2))

  luaL_error(L, "Argument error. Expecting integer priority and "

  "message string");

syslog(lua_tointeger(L, 1), lua_tostring(L, 2));

return (0);

}

Boilerplate C declaration

Validate arguments

Error / exception (doesn't return)

Fetch arguments and call syslog(3)Number of returned values



 

 

Where to find Lua?

● On the Internet, here:
– www.lua.org

● A large community with a good track record
● Lua's progress in time:

– First version: 1993.
– Lua 2.0 – 1994., Lua 3.0 1997., Lua 4.0 2000.
– Lua 5.0 2003.
– Lua 5.1 2006.
– (Lua 5.2 in 2011?)

(most recent: 5.1.4, 2008.)



 

 

Lua and FreeBSD?

● Maybe, if enough people get interested
● Lua is smaller and easier to maintain than:

– TCL
– Perl
– Python
– Ruby
– …

● If it would stop people writing large projects in 
shell, that would be its biggest success :)



 

 

End of part one

● … which introduced Lua
– Motivation
– What is Lua?
– How does it look like?
– Why is Lua a good (or at least good enough) 

choice for scripting?

Questions?



 

 

BSDLUA ?

● My pet project
● “Lua extended with common OS-level functions 

and constants usable for shell scripting”
● 100% Lua-compatible, language is not modified
● Only addition: added a “stdlib.lua” script with 

some common code available to all scripts, etc.
● “Evolved” scripting: uses OS-level functions, not 

only generic OS-independed ones
● “BSD”LUA: a large part is cross-BSD



 

 

The big picture

● The goal is to make a scripting environment 
friendly for both C and shell programmers and 
enable them to be productive while also 
introducing a better language

● Is it a reasonable goal?
– Yes: a relatively low learning curve, most power 

retained from shell scripts (+ ???)
– No: we already have C and /bin/sh so is it worth 

the trouble? (+ ???)



 

 

The concept

● BSDLUA consists of roughly three parts:
– libc wrappers

Offer some of the most commonly used libc 
functions and syscalls

– utility / shell-like functions
Add some convenient shell-like functionalities (file 
testing, program execution and inspection)

– FreeBSD-specific libraries
Implement wrappers for some useful FreeBSD 
system libraries (libkvm, libgeom, ...?)



 

 

libc wrappers

● Same names and semantics as libc symbols, 
Lua-adapted types

● Divided into two namespaces: posix and bsd.
– “posix” contains standard POSIX calls
– “bsd” contains “everything else”
– Not necessarily a good idea, I'm considering 

folding them all into “unix” namespace
● What are the most common functions? Some 

analysis is probably in order...
– stat(), getenv(), open(), read(), write(), chdir()



 

 

stat(2) example

● Example: stat() call in Lua:

st = posix.stat(“file.lua”)
print(table.tostring(st))
print(st.st_size)

print(posix.stat(“file.lua”).st_size)



 

 

stat(2) example

● Example: stat() call in Lua:

st = posix.stat(“file.lua”)
print(table.tostring(st))
print(st.st_size)

print(posix.stat(“file.lua”).st_size)

BSDLUA call Returned value is a table



 

 

Unix / shell-like functions

● Namespace “shell”
● The idea is to make the “usual suspects” in 

programming easier … like “normal” scripting 
languages

● “if [-r $FILE ]” → “shell.r_ok(file)”
– By analogy with access(2)

● Backticks → function shell.ss()
– By analogy with system(3), with a shorter name

● Ideas welcome...



 

 

Shell-to-BSDLUA example

# If CONFFILE was specified at the command-line, make

# sure that it exists and is readable.

sanity_conffile() {

        if [ ! -z "${CONFFILE}" ] && [ ! -r "${CONFFILE}" ]; then

                echo -n "File does not exist "

                echo -n "or is not readable: "

                echo ${CONFFILE}

                exit 1

        fi

} (from portsnap)



 

 

Shell-to-BSDLUA example

-- If CONFFILE was specified at the command-line, make

-- sure that it exists and is readable.

function sanity_conffile(conffile)

if string.len(conffile) ~= 0 and not shell.r_ok(conffile) then

print("File does not exist or is not readable: " .. conffile)

posix.exit(1)

end

end



 

 

Caveats

● Lua strings are 1-indexed (not 0 as in C)
● Lua “not equal” is “~=” not “!=”
● String concatenation is “..”, addition is “+”

– 1 + “1” == 2
– 1 .. “1” == “11”

● 1-line comments begin with “--”
– Multi-line comments are strange “--[[ …\n… ]]--”

● It is its own language...



 

 

FreeBSD-specific libraries

● libcurses – terminal drawing
● Planned for “really soon now”:

– libgeom – FreeBSD's GEOM information
– libkvm – kernel introspection
– The plan: make BSDLUA good enough so that 

system utilities can be created in it
– And then: create some demo utilities like a 

curses-based fdisk



 

 

Future plans

● Finish libc wrappers, shell utility functions
● Implement more FreeBSD-specific libraries
● Make proof-of-concept reimplementation of 

some FreeBSD utilities
● Start advertising it more...



 

 

End of part two

● ...which introduced BSDLUA
● Input required from the audience!

– Overall – is it a good idea?
– What calls / functions to implement next?
– Style – what about posix/bsd namespaces?
– Of course, interested developers can join!

Questions?



 

 

Why Lua could succeed where 
Perl failed?

● Small
● Can be maintained separately from the ports 

version, no conflicts with the ports version
● Much slower development of core language 

features (a couple of versions in a decade)
● Very easy to extend with wrappers of C 

functions
● Very easy to extend C programs with Lua 

scripting



 

 

BSDLUA for developers

● “Do not ask what you can do for Lua, ask what 
Lua can do for you”

● What problems or smaller issues can it solve for 
the developers?

● What could it offer to users?



 

 

For userland developers

● An “in-between” language
– Access to more low-level features than shell
– More enjoyable to program in than shell code

● Embedding C in Lua
– To extend with functionalities, syscalls, etc.
– To make it a glue language more powerful than 

shell code
● Embedding Lua in C

– Add scripting functionality to C programs
● (both directions are easy)



 

 

(For kernel developers)

● ???
● Make your syscalls easily available to shell-like 

environment
● Solaris and Python...? ZFS utilities...?



 

 

For users and administrators

● If it's in the base system, you can depend on it 
being there

● Much less steep learning curve than shell code
● Convenient
● Peace on Earth, world domination of BSD and 

all other good things...



 

 

Possible (current) use cases for 
Lua in base

● Making some larger shell scripts less complex
– Including maybe some in /etc/rc.d

● Scripting the package management system
● Scripting the installer
● Scripting other programs with complex user 

interactions (hastd? (u)carp? devd?)



 

 

Effectively embedding Lua 
support in a C program

● Create a Lua state structure
● Create a Lua environment, populate it with:

– Constants and variables
– Functions important to your program which you 

want to be used from Lua
– Objects, tables, etc.

● Execute a Lua snippet (a file, a string) in this 
Lua context

● Profit !!!



 

 

The End

BSDLUA

ivoras@freebsd.org

Looking for opinions, ideas, co-developers...
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