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Abstract

Data centers pose a unique set of demands on any transport proto-
col being used within them. It has been noted in Griffen et.al. [1] that
common datacenter communication patterns virtually guarantee inci-
dents of incast. In Vasudevan et.al. [2] solving the incast problem in-
volved reducing the RTO.min (the minimum retransmission timeout)
of the transport protocol, but this failed to alleviate the root cause
of the problem, switch buffer overflow. Alizadeh et.al (DC-TCP) [3]
address the same problem with thought given to using ECN [4] with a
new algorithm to not only eliminate incast but to also reduce switch
buffer occupancy, thus improving both elephant and mice flows within
the datacenter. In this paper we attempt to revisit some of the DC-
TCP work with a few differences, namely:

1. Instead of using only TCP [5] we separate the external transport
protocol from the internal datacenter protocol. To achieve this
separation, we use SCTP [6] instead of TCP for the internal dat-
acenter communication, giving us more flexibility in the feature
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set available to our internal datacenter, and at the same time as-
suring that changes within the transport stack internally will not
adversely effect external communications on the Internet itself.

2. When attempting to reproduce some of DC-TCP findings, we
will use existing switch products to provide the appropriate ECN
marking.

3. Instead of using the DC-TCP algorithm we have defined a less
compute intensive modification to ECN we call Data Center Con-
gestion Control (DCCC), implementing it within the FreeBSD
SCTP stack.

4. We compare four variants of SCTP: standard SCTP, SCTP with
ECN, SCTP with DCCC and an alternate form of DCCC we call
Dynamic DCCC. This version of DCCC is capable of switching
between regular ECN and DCCC based on the initial Round
Trip Time (RTT) of the path.

Keywords

Data Center Congestion Control (DCCC); Stream Control Transmission Pro-
tocol (SCTP); ECN; Transmission Control Protocol (TCP).

1 Introduction

At the IETF in Beijing in the fall of 2010 M. Sridharan presented some of
the DC-TCP results. This was the original impetus that led to the devel-
opment of this paper. In reviewing their material, several questions seemed
unanswered by their work and encouraged this investigation.

1. Why was plain ECN not used in the DC-TCP work? ECN itself was
mentioned but no real measurements were performed contrasting DC-
TCP and plain TCP with ECN.

2. The algorithm defined by DC-TCP seemed somewhat complex, using
both floating point numbers in its calculations and also introducing
another state machine to track acknowledgement state. Could there be
a simpler method than prescribed that would obtain similar results?
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3. Could existing hardware, readily available from vendors, be used to
reproduce these results? The DC-TCP paper explicitly mentions a
Broadcom Triumph, Broadcom Scorpion, and Cisco CAT4948 1 switch,
but what is the real availability of a switch off the shelf to support ECN?

4. Could it be beneficial to use one protocol within the datacenter and a
different one for accessing the datacenter? This would allow isolating
any congestion control changes within the datacenter while not effecting
internet traffic.

5. SCTP seems to be a perfect candidate for use within a datacenter.

• It provides a rich set of additional features not available in TCP
(for example it can automatically discard old data after a specified
time).

• SCTP also provides multi-homing and CMT [7] which could prove
useful inside a datacenter.

• SCTP’s ECN implementation is more conducive to knowing when
each packet is marked without changing any internal ECN mech-
anism or maintaining a small state machine to track acknowledg-
ment state. This would make implementation both simpler and
more efficient.

After considering these facts, it was decided to put together a ‘mini-
datacenter‘ to simulate the kinds of traffic highlighted in the DC-TCP work.

2 The Testnetwork

2.1 Gathering the Network Equipment

At first glance one would think gathering the necessary network equipment
in order to do DC-TCP like experiments would be easy:

1. Find several switches that can perform ECN and configure them to do
ECN on an instantaneous basis.2

1The CAT4948 was explicitly mentioned as NOT supporting ECN.
2Normally ECN is set to use average queue size for its decision to mark.
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2. Setup the appropriate set of switch parameters as to when to start
marking.

Finding a switch that supports ECN proved surprisingly difficult. There
are chipsets like the Broadcom BCM56820 and BCM56630 that natively
support ECN in hardware, but the software available from vendors that use
these chipsets did not have the the knobs to enable ECN. After looking at
various CLI configuration guides and talking with switch manufacturers, the
only switch with documented ECN support to be found was the Cisco 4500
series. Thus, instead of having several switches to use for experimentation,
only one was available. A Cat 4500 is really a ”big buffer” switch. This
posed additional problems in setting up a configuration that would allow us
to do DC-TCP like tests.

Our final lab configuration can be seen in Figure 1.

BSD7  2 core

Catalyst 4500

BSD1  2 core

BSD2  2 core

BSD5  2 core

BSD6  2 core

BSD9  4 core

BSD10  4 core

BSD11  4 core

BSD3
8 Core
64 bit

8 Core
64 bit

BSD4

BSD8  4 core

100 Megabit

Gigabit Gigabit

Figure 1: Final Laboratory Configuration
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2.2 Caveats when using the Cisco 4500

We configured the switch in a way that would generate either drops or ECN
with using the Data Buffer Limiting (DBL) feature. DBL allows ECN or
Random Early Drop (RED) like features to be enabled on transmit queues
within the switch.

After some initial problems finding a software version that would support
the features we wished, we finally settled on an older 12.2(31)SGA9 – En-
terprise Release. This version was the only one of those tested that would
generate ECN marked packets.

The DBL feature on a CAT 4500 proved less configurable than desired.
There are four basic settings that control the ECN feature.

1. Maximum Credits - this value represents how many credits to issue to
a flow.3 The value was configurable between 1–15. A credit comes
in to play only when the switch decides it is congested. At the point
the switch does decide it is congested, it then issues this number of
credits to all identified flows4. Every additional packet a flow adds to
the outgoing transmit queue decrements the number of credits it has
available. If the flow does not respond by reducing its rate of sending,
then it may reach the point where it reaches the ‘Aggressive Credits’
threshold, where it will be treated as an aggressive (non-responsive)
flow.

2. Aggressive Credits — This value represents when a flow that is not
responding begins to be considered as a non-responsive flow. The ag-
gressive credits value can be between 1–15.

3. Aggressive Buffers — This is the maximum number of packets a classi-
fied non-responsive flow may have outstanding in the transmit queue.
This value was configurable between 0–255. Any flow having more than
this many packets in a queue that is considered aggressive will have new
packets dropped.

4. Exceeds Action — This item can be set to either use ECN or not. When
not using ECN, the switch signals with a packet drop. With ECN on,
flows supporting ECN will mark the packet instead of dropping it.

3Either identified via IP addresses or IP addresses and layer 4 ports.
4In the case where layer 4 ports are not used then a flow is considered any packets

between a source and destination IP address.
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5. Exceeds Action Probability — This is a percentage of random times
that the Exceed Action will happen (i.e. a packet will be dropped or
marked).

When first examining the switch configuration, it appeared that just by
setting some reasonable values in these control fields we would obtain ECN
marking or drops. A first attempt was made on a Gigabit link using TCP5,
but our initial incast experiments with the eleven servers we had resulted
in no DBL activity drops or ECN markings. Further investigation into the
switch showed us that each Gigabit link has 1920 packet buffers dedicated
to it on the transmit side6, and the receiver side is completely non-blocking.
Evidently, the threshold to obtain enough activity inside any given transmit
queue was high enough that many more flows would be necessary than our
small datacenter could provide with its eleven multi-core FreeBSD servers.

As an alternative, most of our servers were moved to the 100 Megabit
interfaces that were also available on the switch. These interfaces only have
240 packets in their transmit queues, giving a more easily overtaken set of
transmit buffers. Three of the servers, two eight core and one four core,
were left on Gigabit interfaces to provide higher amounts of traffic into the
remaining eight servers. With this configuration we could finally obtain DBL
markings and drops on a reliable basis. With the help of wireshark[8] it was
established that the switch would not enter a ”congested state” and start
marking until at least 120–130 packets were queued by a single flow. Two
flows appeared to get the switch marking around 70–80 packets from each
flow.

We were now left with a dilemma. In the DC-TCP experiments, the
switch was configured to mark whenever a flow took more than N packets: N
was set to 20 for Gigabit links and 65 for 10 Gigabit links. Our switch would
not mark packets until more than 100 packets were in the queue. Without
the proper controls over when the switch would start marking packets, how
could the switch be configured to approximate the circumstances used in the
previous work?

The solution was to configure the switch to have a maximum number

5We used TCP in our initial tests to validate that the switch would do ECN since we
were unsure, at first, if SCTP would be properly marked. Later we switched to SCTP to
do all of our measurements after confirming that the switch would correctly mark SCTP
packets.

6There is no configuration setting that allows us to lower this value.
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of credits (15), the fall-over to an aggressive flow at a low value (5), the
probability of exceeds action to 100% and the exceeds switch buffer to the
maximum to 255. With this configuration, marking would happen as noted
earlier around 120–130 packets, and in the worst case (with two flows) around
75 packets, or 150 total packets outstanding. This then would leave some-
where between 90–120 packets available before the transmit queue would
overflow.

It was felt that this configuration would be closer to what could be ob-
tained with a more configurable switch with less buffer space (i.e. somewhere
in the range of a switch with 100 packet buffers available configured to start
marking packets around 10). The only downside to this configuration was
that with 130 or more packets in queue7 the round trip time would increase
to up to 14–15ms. Though not as flexible as the configuration presented in
the DC-TCP papers, it was definitely a more realistic configuration with the
only off-the shelf switch we could find supporting ECN.

3 Targeted Communication Pattern

In examining the results of DC-TCP it was decided to focus specifically on the
interactions between the elephant flows; in a datacenter those flows updating
databases on the order of a constant one or two flows sized randomly at
about 100–500 Megabyte per flow, and the mice; partition/aggregation flows
that typically can cause incast. In the following subsections we describe each
client and server that was created for our experiments and which is available
online at http://www.freebsd.org/~rrs/dccc.tar.gz.

3.1 Partition/Aggregation Flows

Incast occurs when simultaneous sends by a number of hosts cause buffer
overflow within a switch. For a detailed look at incast see R. Griffith et.all [1].
A partition/aggregation flow is one that sends a request to multiple servers,
and all of the servers respond as rapidly as possible, usually with a small
number of packets. The requestor then aggregates this data and sends it back
to the external requestor. Since most of the aggregate servers will respond
at almost the same time the partition/aggregation work model precisely fits
a description of incast.

7Before marking began the round trip time normally around 115us.
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To simulate incast on our testbed we built a client (incast client.c)
and a server (incast server.c), which do the following:

1. Open a socket and bind to a specific well known port and address8.
After creating and binding the socket issue a listen setting the backlog
to X9.

2. Create N10 additional threads, besides the main thread.

3. Each thread, including the main thread, loops forever accepting from
the main listening socket.

4. When a connection is accepted, a simple structure is read from the
client connection that includes two fields, the number of packets (or
sends) to make, and the size of each send.

5. After receiving the request, the thread then sends the requested number
of packets at the set size and then closes the socket, returning to the
accept call.

The server was always bound to the single address that our CAT 4500
was connected to the hosts over11 see Figure 1. The server also accepted
one other option, whether to run over SCTP or TCP, allowing us to use the
same server in both our early testing, validating the switches configuration
for ECN, and our final tests using SCTP.

The clients were a bit more complicated. It was decided to build a uni-
versal configuration file that could be reused to describe all of the peers that
any particular machine had. An example of the file from ‘bsd3‘ is shown
below:

sctp:on

peer:10.1.5.24:0:bsd1:4:

peer:10.1.5.23:0:bsd2:4:

peer:10.1.5.22:0:bsd5:4:

peer:10.1.5.21:0:bsd6:4:

8The multi-homing behavior of SCTP was specifically disabled by binding to only a
single address.

9We used a value of 4 for the backlog value X in our tests.
10N in our testbed was set to 10.
11In our case 10.1.5.X.
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peer:10.1.5.20:0:bsd7:4:

peer:10.1.5.19:0:bsd8:4:

peer:10.1.5.18:0:bsd9:4:

peer:10.1.5.17:0:bsd10:4:

peer:10.1.5.16:0:bsd11:4:

peer:10.1.5.15:0:bsd4:8:

times:0

sends:1448

sendc:2

bind:10.1.5.14:0:bsd3:8:

All fields within the file are separated by the : character. The first
line in the example contains either a sctp:on or tcp:on, which controls the
transport protocol the incast client will use.

The peer line is made up of the keyword peer followed by the IP address
of a machine running the server. The next field indicates the port number
the server is listening on, where 0 indicates that the default value for the
server should be used12. The next field represents the hostname of the peer,
a value that is used only by some of the data processing routines. The final
field represents how many bytes a long holds; and was used by our data
processing routines to determine what record format to read13.

The line containing the keyword times indicates how many times to run
the test, a value of 0 means run forever.

The keyword sends indicates how many bytes to send. We always elected
1448 since this is the number of bytes that will fit in a typical timestamped
TCP packet, SCTP is actually capable of fitting 1452 bytes, but it was de-
cided to keep the same exact configuration without changing the number of
bytes in each packet.

The keyword sendc specifies how many packets the client should request
of the incast server.

The final line indicates the actual address and port to bind. The format
is the same as that of a peer entry with the only difference being a bind

keyword.
Once the configuration file is loaded (passed to the incast client program

with the required -c option), the process creates a kqueue, which it uses

12For the incast client the default server port was 9902.
1332 bit machines write the value for a time as two 4 byte longs where as 64 bit machines

write the value as two 8 byte longs.
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to multiplex responses from servers. It then enters a loop for the requested
number of times (which may be infinite) and does the following:

1. Record the start time in a special header record using the precise real-
time clock.

2. Build a connection to each of the peers listed in its peer list (loaded
from the configuration file). Building a connection includes opening a
socket to each peer and setting NODELAY14 on it, connecting to each
peer, and adding an entry into the kqueue to watch for read events
from the peer.

3. After all the connection were built, another precise real time clock
measurement was taken.

4. Every server is now sent a request for data, and then its state is set to
‘request sent’.

5. After all the servers were sent the request, the kqueue was watched until
all of the servers responded with the prescribed number of requested
bytes. When the first byte of a message is read15, a precise monotonic
clock time is taken and stored with the peer entry, followed by its state
being set to ‘reading’. When the last byte of a request arrives another
precise monotonic clock is again taken and stored with the peer entry.

6. Once all of the peers have responded, a final precise realtime clock is
taken and stored in the header record with the number of peers.

7. The results are either displayed or stored based on whether the user
specified an output file on the command line. If the results are being
displayed, then only peers that responded in more than 300ms are
shown. If the results are being stored, the header record is written
first, followed by a record for each of the responding peers with their
timings.

8. This sequence is repeated until the specified number of iterations is
reached.

14NODELAY turns any Nagle[9] like algorithm off.
15Indicated by the state being ‘request sent’.
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3.2 Elephant Flows

To simulate datacenter like traffic, a small number of large flows are also
needed. In a real datacenter, these flows would provide updates to the various
databases that all the query traffic is attempting to access.

We realized these flows using a specific server (elephant sink.c) and
a corresponding client (elephant source.c). In these measurements, each
machine ran a server; but only two machines were chosen to run a client.
The hosts that ran the elephant source (bsd3 and bsd4) were our two, eight
core, 64 bit machines, connected to the switch via a Gigabit ethernet port.
This allowed the elephant flows to always push at filling the transmit queues
of the 100 Megabit clients. One additional host (bsd8) was also connected
via Gigabit ethernet to provide an additional push on transmit queues while
running the incast client. Note that the elephant flows that were sent to
this additional host (bsd8) were not used in measuring overall bandwidth
obtained in our datacenter simulation.

The elephant sink worked much like our incast server, creating a number
of threads, defaulting to 2, that would do the following after binding the
specified address and port numbers:

1. Accept a connection from a peer.

2. Record both the precise monotonic time and the precise realtime clock.

3. Read all data, discarding it but counting the number of bytes read,
until the connection closed.

4. Record again the precise monotonic time and the precise realtime clock.

5. Subtract the two monotonic clock values to come up with the time of
the transfer.

6. Display the results either to the user, if no output file was configured,
or save it to the output file. The results include the size of the transfer,
the number of seconds and nanoseconds that the transfer took, and
the bandwidth. Note that when writing to an output file a raw binary
record was used that also included the realtime clock start and stop
values.

7. Repeat this sequence indefinitely.
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The elephant source used the same common configuration files that were
used by the incast client program. After loading the configuration our ele-
phant source would first seed the random number generator (by using the
monotonic precise clock), and then do the following:

1. Choose a random number of bytes in the range of 100,000,000 and
536,870,912.16

2. Record in a header the precise realtime of the pass start.

3. Distribute the data to each peer, to do this we would connect to each
peer, turning on NODELAY17, record the precise monotonic clock with
the peer record, send the specified number of bytes and close the con-
nection. After closing the connection again, record the end monotonic
precise time.

4. After distributing the data to all peers we would again obtain the re-
altime precise clock end time for our header record.

5. Next the results would be displayed to the user or stored. When stor-
ing the results, a header record would be written out with all of the
timestamps followed by the precise times of each of the peers.

6. These steps were then repeated until the iteration count was reached
(which was also allowed to be infinite).

When configuring the two elephant sources, we reversed the client list
order so that on a random basis they met somewhere in their distribution
attempting to send data to the same elephant sink at various times during
their transfers. During data analysis the elephant source file was used to
first read the results, but the recorded timestamps of the elephant sink files
were used to obtain the precise time of transfer (first byte read to last byte
received). Any data transfer bandwidth to either bsd3, bsd4, or bsd8 was
not included in our bandwidth graphs, since these three hosts had Gigabit
interfaces which would unduly skew the transfers.

With our pairs of clients and servers completed and tested we were almost
ready to begin our experiments. But first we needed to examine SCTP

16This number was arrived at as a mask to bound the random number since when you
subtract one the number becomes 0x1fffffff.

17NODELAY turns any Nagle[9] like algorithm off.
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congestion control when handling ECN events and modify it according to
our simplified algorithm.

4 Our Data Center Congestion Control Al-

gorithm

The algorithm used by SCTP for ECN provides a lot more information than
the standard TCP ECN. This is due to the fact that SCTP is not limited
to two bits in a header to indicate ECN and so provides a much richer
environment for its implementation. The normal response of SCTP to an
ECN Echo event is the same as TCP in any loss within a single window of
data:

ssthresh = cwnd / 2;

if (ssthresh < mtu) {

ssthresh = mtu;

RTO <<= 1;

}

cwnd = ssthresh;

Figure 2: Algorithm 1

When one or more losses occur in a single window of data, the cwnd
is halved and the ssthresh is set to the same value. When an ecn echo
is received, the congestion control algorithm is given two extra pieces of
information besides the stcb and the net structures18.

These two extra pieces of information are the keys to our new DCCC
algorithm, they are the in window flag as well as the number of packets
marked. The in window flag is used by the current algorithm to know if it
should perform the algorithm shown in Figure 2, and the number of packets
marked is ignored by the existing algorithm. For our new algorithm we
use both of these values combined with another value passed to us via the
network structure (net).

18The stcb and net structures are internal structure used within the FreeBSD SCTP
stack to track the specific SCTP association (stcb) and the specific details of a peers
destination address (net).
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Each time a SCTP chunk is sent in a packet, we also record the congestion
window at the time the transmission was made19. When an ECN Echo
arrives, before calling the modular congestion control, an attempt to find the
TSN20 being reported is made. The TSN will always be found if the ECN
Echo is in a new window of data. If the TSN is found, the previous cwnd
at the time that the TSN was sent21, is recorded on the net structure in a
special field for ECN (ecn prev cwnd). These three values are then used as
shown in Figure 3.

if (in_window == 0) {

cwnd = ecn_prev_cwnd - (mtu * num_pkt_marked);

ssthresh = cwnd - (mtu * num_pkt_marked);

} else {

cwnd -= mtu * num_pkt_marked;

ssthresh -= mtu * num_pkt_marked;

}

Figure 3: Algorithm 2

It is important to remember when looking at SCTP congestion control
parameters that there is a separate set of parameters for each destination ad-
dress (RTO, cwnd, ssthresh and mtu). In our experiments this was never an
issue since SCTP was kept in strict single-homed mode by binding explicitly
a single address.

As noted earlier we also used a third algorithm. We termed this version
dynamic DCCC, because the algorithm would switch between normal ECN
behavior and DCCC based on the initial round trip time measured on the
first data packet. SCTP uses this value to try to determine if the destination
address is on a local LAN. If it thinks that it is on a local LAN (i.e. having a
round trip time of under 1.1ms), then it sets a flag. Our dynamic algorithm
simply used that flag to switch between the algorithms shown in Figure 2
and Figure 3.

19The value is recorded on an internal structure used to track the chunk.
20A Transport Sequence Number is the unit of message transmission that SCTP uses

when it sends data.
21Found on the chunk structure mentioned earlier.
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5 Measurements

We first decided to examine incast and how the three algorithms (DCCC,
DYN-DCCC and ECN) compared with running plain SCTP in our network.
We started an incast server and elephant sink on each machine (bsd1–bsd11)
and then started an incast client passing it options to start collecting data.
Once all incast servers were running, we started two elephant sources one on
bsd3 and the other on bsd4.

5.1 Runtime

With the switch configured to drop, i.e. not do ecn, we then record all results
and were able to obtain the plots shown in Figure 422.
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Figure 4: Normal SCTP transfers experiencing incast

In Figure 4 we see incast occurring in cases where the time to complete

22Time below 15ms excluded.
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a transfer exceeds 300ms23. In some cases we see more than one retrans-
mission. Clearly incast is occurring on a fairly regular basis. Counting the
actual number of incast occurrences shows us 567 different incidents of incast
represented in Figure 4.

Next it was decided to turn on ECN in the switch with no changes to the
congestion control algorithm. This lead to the results seen in Figure 524.
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Figure 5: Normal SCTP with ECN experiencing incast

Note that simply enabling ECN on the switch with our settings reduces
the incidents of incast to a minimal level. There are only 4 occurrences
of incast that reach the 300ms level. This is a vast improvement over our
previous figure.

Curiously, bsd4 shows quite a few delays in returning results, below the
incast level, but still quite high. Since these measurements are taken from
the perspective of the aggregator and bsd4 is connected via Gigabit ethernet,

23The default RTO.min timeout value for SCTP.
24Time below 15ms excluded.
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clearly it must be caused by delays in the incast server receiving the initial
request to transfer the two packets back to it. Most likely this is caused by
a lost setup message during the connection startup.

Next, the same tests were run, but this time using our DCCC algorithm in
place in the SCTP stack. The results from this run can be seen in Figure 625.
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Figure 6: DCCC ECN experiencing incast

Surprisingly, the actually occurrence of incast increases in this graph to
34 separate incidents. This was unexpected, but with a look at some of our
further graphs we will see possible reasons why so much unexpected incast
is occuring.

Finally, we ran the tests again only this time we used our Dynamic DCCC
algorithm. This allowed the SCTP stack to switch between normal ECN and
DCCC ECN based on the round trip time seen when transfer of data first
begins. The results of this test can be seen in Figure 726.

25Time below 15ms excluded.
26Time below 15ms excluded.
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Figure 7: Dynamic DCCC ECN experiencing incast

Here we see no incidents of incast over 300ms, which is an unexpected
outcome since we had anticipated no differences between DCCC (with its
34 incidents) and the dynamic version. If we turn, however, to the elephant
graphs, we can reach a conclusion as to why these incidents are occurring.
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5.2 Bandwidth of Elephant Flows

Lets look at the four graphs of the elephant transfers that were being run
while all the incast was occurring.

Figure 8 shows a normal SCTP transfer with ECN disabled. Note the
huge swings downward in throughput for both flows when the flows collide
and share transfer to the same machine.

During these incidents, we can be sure that a large number of drops
are occurring. A look at the switch information tells us that not only are
DBL drops happening but also tail drops from transmit queue overflows are
occurring as well. The switch reports 19,312 DBL drops and 46 Transmit
queue drops. The SCTP statistics show a large number of T3-Timeouts27

i.e. 1360. Any T3 timeout in the incast test would definitely cause an incident
of incast since there is not enough data in the pipe to enable fast retransmits
with only two packets being sent.
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Figure 8: Bandwidth of two flows no ECN

27A T3-Timeout, in SCTP, is the firing of the SCTP data retransmission timer.
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Figure 9 show the data transfer when ECN is enabled on the switch but
no alternate congestion control is running. In this graph, we see fewer swings
and a more orderly set of transfers. Checking the switch error counts we find
that there occurred 1,079 DBL drops and 65 tail drops. SCTP’s statistics
also show 43 T3-Timeouts28, but far from the larger number seen in the
instance of no ECN.
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Figure 9: Bandwidth of two flows with ECN

We enable our modified congestion control with DCCC, and the band-
width results are seen in Figure 10, showing similar behavior to ECN but
with a bit better performance in overall bandwidth. The error counters on
the switch, however, show 1,890 DBL drops and 1,441 tail drops. This tells
us that the more aggressive congestion control, when the two large flows meet
on the same host, end up overflowing the switch transmit queues. The SCTP
statistics show similar results of 422 T3-Timeouts29.

28A T3-Timeout, in SCTP, is the firing of the SCTP data retransmission timer.
29A T3-Timeout, in SCTP, is the firing of the SCTP data retransmission timer.
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Figure 10: Bandwidth of two flows with DCCC

Finally, the bandwidth of our Dynamic DCCC is shown in Figure 11.
Clearly the overall bandwidth is better than in any other of the tests. The
switch error counters show that only 35 tail drops occurred and 1,028 DBL
drops. SCTP statistics show only 42 T3-Timeouts30. This would explain the
lack of incast on our earlier incast chart for Dynamic DCCC.

You can see that the large flow that arrives first on a particular host is
being more aggressive, while the later arriving large flow is less aggressive.
This is due to the fact that our switch will not start marking until 130
packets. At about 115us per packet this means that the round trip time
must be close to 14ms by the time the second flow arrives. This pushes that
flow into standard ECN mode. The combination obviously keep both flows
aggregate packet load offered much smaller and thus less drops occur.

One thing that is not illustrated in any Cisco documentation is what a
DBL drop means. Considering that we have the exceeds action set at 255

30A T3-Timeout, in SCTP, is the firing of the SCTP data retransmission timer.
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Figure 11: Bandwidth of two flows with Dynamic DCCC

packets, 15 packets above the transmit queue size, one would expect that you
would only get tail drops occurring. It is important to also remember that
a DBL drop would occur for any non-Data packet since the ECN code-point
ECT031 would NOT be enabled on any packet that does not contain data.
Thus our DBL drops could be lost SACK’s or other connection setup packets.
Without further information from Cisco, it is hard to tell if the DBL drop
counter is strictly drops or if it also includes the number of ECN marked
packets that would have been dropped.

5.3 Aggregate Bandwidth

Finally, Figure 12 shows us an aggregate bandwidth comparison of the overall
throughput of the 4 different tests. Each of the two flows in the test are

31ECT0 is the mark used in the IP level header by a transport protocol to indicate ECN
support to a switch or router.
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summed together to give an overall aggregate and then these are summed to
give us the average goodput of the combined flow on a per second basis.
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Figure 12: Aggregate Bandwidth Comparison

As expected the ECN flow was better than the non-ECN flow by approx-
imately 2%. The pure DCCC flow increased its bandwidth by nearly 5.5%
over the standard SCTP with no ECN. And as expected from our earlier
graphs, the Dynamic DCCC yielded close to a 7.9% bandwidth improvement
over standard SCTP. As can be seen from the graph, this is quite a distance
from the theoretical maximum. Note that the theoretical maximum includes
a key assumption i.e. that no two flows would be transferring to the same
computer at the same time. This could only be achieved by flow coordination
between the two elephant flows.
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6 Conclusion and Future Work

After examining the data presented here, packet traces, and respective graphs
from those traces32, the most clear conclusion reached is that with proper
configuration, enabling ECN will virtually eliminate incidents of incast in
the datacenter. This is, of course, provided that the SCTP or TCP stack
properly implements ECN within it.

So what should switch vendors take away from these results?

1. They should have an implementation of ECN for their datacenter swit-
ches, and having one for non-datacenter switches could also be a benefit
to their products. Many of the more modern chips (e.g. BCM56820)
already support ECN in hardware and its just a matter of allowing its
users access to those hardware features.

2. Vendors need to allow configuration for both ‘network level settings’
(i.e. those classically called for by ECN) and ‘Datacenter settings’. Net-
work level settings would allow the switch to use average queue size and
hopefully set thresholds to start marking and dropping in terms of per-
centage of queue occupied by a flow. Datacenter settings would allow
a switch to be configured for observing instantaneous queue size and
allow control of the number of packets to start marking and dropping
at, instead of percentages of queue size.

3. Vendors need to make sure that all transport protocols can be fully
supported that use ECN. This means, if a vendor supports the concept
of a flow, it needs to not be restricted to just TCP, but also should
include SCTP. Using the same port numbers with SCTP would be
acceptable, but innovative providers could also use SCTP v-tags for
this purpose.33

Other conclusions from this work are much less clear. The performance
gain of the various DCCC algorithms was evident but these gains were limited
(5.5 and 7.9%). Clearly this is an advantage, but is it an advantage worth

32Not shown for brevity, but tools to generate them from a wireshark trace are included
in the source code drop for those wanting to recreate our results.

33Our observations never determined if the CAT4500 considered all traffic between IP
address or individual SCTP flows since there was no way to determine if the CAT4500
understood SCTP.
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changing congestion control algorithms within the transport protocol? The
dynamic version is obviously most attractive since if it was implemented, it
could easily exist on the internet with no impact, since it would switch itself
off in cases of a longer RTT time34.

In thinking of our limited switch configuration, if this was changed so that
marking could begin at 5–10 packets would we see the same results? Clearly
the dynamic DCCC would become less dynamic and might look more like
plain DCCC. But would plain DCCC do better since it would no longer be
hitting tail drops by overrunning the switch transmit queues? Also the plain
SCTP-ECN variant may well perform less well in a switch that was more
aggressively marking ECN. These questions are some of the future work that
is envisioned to attempt with a more controllable switch. The authors have
been informed that Broadcom offers a development kit which hopefully can
be acquired at a reasonable cost and configured in such a way as to provide
insights into these questions.
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Appendix A - Switch Configuration

For those interested in repeating our experiments, we show the CLI config-
uration of the Cisco CAT4500 switch. Note that we varied the QOS DBL
exceed action between ECN and no ECN.

6.0.1 QOS DBL CONFIGURATION

Here we show the basic QOS DBL configuration used. It was also not ever
certain that the CAT 4500 could actually distinguish SCTP ports in separate
flows.35

34We used 1.1ms but would think something smaller, perhaps 700us would be better for
general deployment.

35This may mean that the switch always saw traffic from each machine as a single flow,
but this will have no impact on our results since all measurements would be impacted
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no qos dbl flow include vlan

qos dbl exceed-action ecn

qos dbl exceed-action probability 100

qos dbl credits aggressive-flow 5

qos dbl buffers aggressive-flow 255

qos dbl

qos

A show qos dbl on our CAT 4500 displays the following:

QOS is enabled globally

DBL is enabled globally

DBL flow does not include vlan

DBL flow includes layer4-ports

DBL uses ecn to indicate congestion

DBL exceed-action probability: 100%

DBL max credits: 15

DBL aggressive credit limit: 5

DBL aggressive buffer limit: 255 packets

6.0.2 POLICY MAP AND CLASS MAP

Here we show the specific class map and policy map used. Notice the inter-
faces apply a transmit to shape traffic to one Gigabit. This was suggested
by a former Cisco colleague to get ECN and DBL to work. The settings are
high enough for both our 100 Megabit and Gigabit links so that the shaping
action would never be applied to the interface. Only the QOS DBL actions
would influence the transmit queue. Shaping actions on a Cisco 4500 happen
before DBL actions.

class-map match-all c1

match any

policy-map p2

class c1

dbl

police 1000 mbps 100 kbyte conform-action transmit

exceed-action drop

(ECN and non-ECN) in the same way.
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6.0.3 Example Interface Configuration

Here is an example of our specific interface configurations. Notice that for
Gigiabit interfaces we turned off flow control in the initial attempts at trying
to use these interface to get ECN markings.

interface FastEthernet2/48

service-policy output p2

interface GigabitEthernet3/1

flowcontrol receive off

service-policy output p2

Appendix B - Whats in the tarball?

Here is a brief list the program files you will find in the tarball, if you down-
load it. Many of these utilities were used to generate data not presented
here, but they may be of interest to those attempting to recreate the results.
All software is released under BSD license.

display ele client.c This program understands how to access stored ele-
phant results file from a client and will further look for timing from
the stored elephant sink output results. A common naming scheme is
used to find the files, and the store option really takes a directory path
prefix.

display ele sink.c This program knows how to read a single elephant sink
file.

display inc client.c This program has the ability to read and interpret the
incast client output.

ele aggregator.c This utility was used to aggregate multi-machine elephant
output.

elephant sink.c This utility was described earlier and is the actual mea-
surement tool for elephant flows.

elephant source.c This utility was described earlier and contains the client
code that drives the elephant flows.
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incast client.c This is the incast generation program described earlier.

incast lib.c This is the common library utilities that most of these programs
used.

incast server.c This is the incast server described earlier.

per aggregator.c This utility is yet another aggregator used in summing
data.

read cap.c This utility is a special pcap reader capable of reading a tcp-
dump36 or tshark dump. It analyzes SCTP flow information and can
create output for gnuplot to observe packets outstanding as well as
packets outstanding when ECN Echo’s occur.

sum aggregator.c This is yet another aggregation utility.
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