AEROSPACE

Assuring Space Mission Success

Porting HPC Tools to FreeBSD

Brooks Davis <brooks@aero.org>
The Aerospace Corporation

Enterprise Information Services/Technical Computing Services
AsiaBSDCon 2010
13-14 March 2010

© The Aerospace Corporation 2010

Abstract

Since 2001 we have used FreeBSD as a high performance computing (HPC) cluster operating system. In
the process we have ported a number of HPC tools including Ganglia, Globus, Open MPI, and Sun Grid
Engine. In this talk we will discuss the process of porting these types of applications and issues
encountered while maintaining these tools. In addition to generally issues of porting code from one
Unix-like operating system to another, there are several type of porting common to many HPC
infrastructure codes which we will explore. Beyond porting, we will discuss how the ports collection
aids our use of HPC applications and ways we think overall integration could be improved.

Cluster Computi

Calln

[IOWSNIP

g At The Aerospace Corporation

T

oLC

ne |
ne i

(Photo/The Aerospace Corporation)

* 352 dual processor nodes running FreeBSD
* Gigabit networking

Our largest HPC resource

rooks@acro og 2 @AEROSPACE

Architecture Office/Technical Computing Services

At Aerospace we have designed, built, and operated a FreeBSD HPC cluster since 2001. This picture
shows the Fellowship cluster in it’s current form with 352 dual processor nodes. In the process of
building and running Fellowship we have ported a number of open source HPC tools to FreeBSD. In
this talk | will discuss the process of porting them, issues we encountered, and a few pet peeves about
application portability.

Tools We Have Ported

e
GRIDE G inES

SGE

Ganglia

.sourceforge.net

Other ports include Globus and PSSH
ooks@oercors) (/) AEROSPACE

Architecture Office/Technical Computing Services

Some of the tools we have ported to FreeBSD include Sun Grid Engine—also known as SGE—a batch
job manager; the Ganglia monitoring system, a cluster/grid monitoring tool; and Open MPI a leading
implementation of the Message Passing Interfaces which is a toolkit for message based parallel
programming.

The Ganglia Monitoring System

Manticore cluster Cluster Report for ¥ri, 14 Aug 2009 11:48:28 -0400 (Get Fresh Data) g‘}‘%ngha oo
. 7 t%
Metric [load_sne 4] Last [hour |+) Sorted | dascending &) Physical View g ?Olkl <
y//ganglie sourceforgeniet
Grid > Manticore cluster > (--Choose aNode)
Overview of Manticore cluster
CPUs Total: 240 Marticere cluster Cluster Load last hour Manticore cluster Clustes CPU last hou~
osts up: 86 100
Hosts down: [] w2 v B
i3 § 60
£ H a0
S
Avg Load (15, 5, 1m): H = G
1
0%, 0%, 1% -
Localtime: a 1100 120 114y
caltime: 11 00 11.20 1140 Wuser cPU [Nice CPU [System CPU [WAIT CPU
2009-08-14 11:48 O1-min Loed [Nodes M CPLs B Runiing Proceszes O 1die cPu
Menticore cluster Cluster Memcry last hcur Manticore cluste~ Lluste~ Networ< last hour
Cluster | nzd Perrertages 300 6 B e et
De-2s aoc.00) § 206 g 1o
£ 8 oa3m
Y <
2 106 PR
Yonam
Fl > Gl|a
1 00 11:20 11:40 oam
M Memory Used M Memory Shared Memcry Cached 0.5
O Memory Buffered H “enory Swapped 11:00 11:20 11:40
B Total In-Core Memory Ein Bt

rooks@asroorg . @AEROSPACE

Architecture Office/Technical Computing Services

The Ganglia monitoring systems, usually refered to as Ganglia, is a cluster and grid monitoring tool that
provides current and historical data on the status of a cluster or collection of clusters. The data

includes CPU count, CPU utilization, memory use, and network /0. Ganglia is used on systems ranging
from small clusters to PlanetLab, a globally distributed network of over 1000 nodes at nearly 500 sites.

http://www.planet-lab.org/

Ganglia Metric Structure

» Daemons on each node send metrics to a central collector
» Meterics cover system configuration and load
» Metrics may be fixed or variable
* Examples:
— Operating system
— CPU count and type
— CPU utilization breakdown
— System memory allocation

» Providers are functions that return string or numeric values
» Previous versions hard code a table of function pointers
— More recent versions have pluggable metrics

rooks@asroorg 5 @AEROSPACE

Architecture Office/Technical Computing Services

Ganglia consists of daemons on each node send periodic updates of various metrics to a central
collector that stores the results in a set of RRD databases. The metrics cover many aspects of system
configuration and load and may either be fixed (per-boot) or vary with time. Example metrics include
operating system, CPU count and type, cpu utilization breakdown, and system memory allocation.

Metric providers are functions the return string or numeric values. In early versions of Ganglia the set
of metrics was determined at compile time. In more recent versions, it is configured at runtime and
pluggable metric providers are supported.

Porting Ganglia Metrics: General Process

+ Examine the code for other operating systems to determine what the
metric really means

» Find a way to get the desired value from normal user tools
— Look at top(1), ps(1), procstat(1), sysctl(1), etc

» Take advantage of open source and read the code to the utilities in
question

* Read man pages on the functions discovered

» Either write appropriate code or (if the licenses allow) appropriate it
from utility in question

rooks@asroorg 6 @AEROSPACE

Architecture Office/Technical Computing Services

The process | used to port metrics is pretty simple. First, | checked the code for other operating
systems to determine what the metric means. Then | figured out a way to use standard tools such as
top, ps, procstat, or sysctl to extract that information from the system. Once appropriate tools were
identified, | examined their source code to determine how they retrieved the information in question
and used that information along with man pages to write an appropriate metric implementation. In
many cases it was possible to copy the code directly from FreeBSD utilities along with another
copyright statement and license block because Ganglia is BSD licensed.

Ganglia Metric: cpu_num
g val t
cpu_num_func (void)
{
g val t val;
int ncpu;
size t len = sizeof (int);
if (sysctlbyname("hw.ncpu", &ncpu, &len, NULL, 0)
== -1 || !len)
ncpu = 1;
val.uintlé = ncpu;
return val;
}
T i carping s ’ (A4 AEROSPACE

One of the simplest metrics that requires operating system interaction (as opposed to looking at the
ganglia config files) is the cpu_num metric. The cpu_num metric shows the number of cpus in the
system. As such it’s about the easiest function to write. We simply observed that the easiest way to
get the number of cpus on FreeBSD was the hw.ncpus sysctl and wrote code to obtain that value.

XXX: add animation to point out the uint16 bit?

Ganglia Metrics: swap_total, swap_free

* Administrators obtain swap information from swapinfo(1)
$ swapinfo

Device 1K-blocks Used Avail Capacity
/dev/ad4s1b 2011128 0 2011128 0%

» The swapinfo(1) command (actually usr/sbin/pstat) obtains swapinfo
either via the Kernel Memory library (libkvm) or by sysctl.

* We support both in Ganglia
— libkvm: Supports older versions of FreeBSD
— sysctl: Does not require root (dropped after startup)
— Selection at runtime based on sysctl MIB presence

rooks@asroorg 8 @AEROSPACE

Architecture Office/Technical Computing Services

The swap_total and swap_free metrics represent several interesting cases including the use of the
kvm(3) interface and supporting multiple interfaces for cross platform support. In porting them we
observed that users and administrators can obtain swap information from the swapinfo(1) command.
After determining that it was actually a link to pstat, we dug into the code and determined that it used
libkvm to access the data if called on a coredump and a sysctl if not. When we first ported Ganglia,
FreeBSD 4 did not support the sysctl interface so we supported both because the sysctl interface
allowed us to run ganglia without ever being root, but the libkvm interface as needed since we used
FreeBSD 4.x. As | will show, our implementation probes at runtime and prefers the sysctl interface.

Ganglia Metrics: swap_total, swap_free (cont)

g_val_t metric_init(void)

{
g_val_t val;

mibswap size = MIB_SWAPINFO_SIZE;

if (sysctlnametomib("vm.swap_info", mibswap, &mibswap_size) == -1) {
kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "metric_init()");
} else {

kd = kvm_open(_PATH DEVNULL, NULL, NULL, O _RDONLY, "metric_init()");
use_vm_swap_info = 1;

}

pagesize = getpagesize();

<..0>

val.int32 = SYNAPSE_SUCCESS;

return val;

rooks@asroorg o @AEROSPACE

Architecture Office/Technical Computing Services

Here we have a partially redacted version of the FreeBSD metric_init() function. It shows the portion
of the function which checks for the availability of the vm.swap_info MIB and then either opens and
stores a descriptor pointing to the running kernel’s memory or stores a descriptor pointing to /dev/null
to allow sysctl based libkvm commands to work. It also caches the system page size and the fact that
the swap_info MIB was found.

Ganglia Metrics: swap_total, swap_free (cont)

if (use_vm_swap_info) {

for (n = 0; ; ++n) {
mibswap[mibswap_size] = n;
size = sizeof (xsw);
if (sysctl(mibswap, mibswap_size + 1, &xsw, &size, NULL, 0) == -1)
break;
if (xsw.xsw_version != XSWDEV_VERSION)

return val;
totswap += xsw.xsw_nblks;
}
} else if(kd != NULL) {
n = kvm_getswapinfo(kd, swap, 1, 0);
if (n < 0 || swap[0].ksw_total == 0)
val.f = 0;
totswap = swap[0].ksw_total;
}
val.f = totswap * (pagesize / 1024);

rooks@asroorg 0 @AEROSPACE

Architecture Office/Technical Computing Services

Here we see the core of swap_total_func(). Depending on the results of metric_init(), the amount of
swap used is either retrieved using sysctl() or libkvm. In the sysctl case, we retrieve information from
each individual swap device and total them where the libkvm interface provides a direct total. There
are a couple other interesting things of note here. First, ganglia expects swap size to be a floating point
number of KiB. Variants of this are common in ganglia due to the desire to represent large sizes
identically on all machines. Another interesting thing is the XSWDEV_VERSION line. This points out a
problem with version numbers in binary interfaces. They are all well and good, but clients need to
know about the new version so in practice they do little to help provide ABI stability.

10

Ganglia Metrics: Memory Use

* Adifficult set of metrics to implement
* Ganglia memory types: total, buffers, cached, free, shared
* Memory types in top(1): active, inactive, wired, cache, buffers, free

* Possible values for total: hw.physmem, hw.realmen, hw.usermem,
total of values from top(1)?

Ganglia Metric Source In Port

mem_total hw.physmem

mem_buffers vfs.bufspace

mem_cached vm.stats.vm.v_cache_count
mem_free vm.stats.vm.v_free_count
mem_shared 0

Free memory is wasted memory. —anonymous

brooke@aero o W @AEROSPACE

Architecture Office/Technical Computing Services

The ganglia metrics for memory use were some of the hardest to port and some of the one’s I'm least
satisfied with overall. The problem stems from the fact that the different virtual memory systems in
different operating systems use vastly different sets of accounting buckets. The Ganglia metrics total,
buffers, cached, free, and shared appear to be derived from values that are easy to obtain on Linux.
Unfortunately, they don’t match any of the major sets of memory use FreeBSD outputs. For example
top(1) shows active, inactive, wired, cache, buffers, and free memory where free memory is always a
small number of a system that has been up and active for some time since the VM sees little need to
waste CPU time freeing memory that might be used again. As the saying goes free memory is wasted
memory in the operating system. Even total memory is complicated. For example we have both
hw.physmem the actual amount of memory in the system (modulo 32-bit limits on 32-bit, non-PAE
system) and hw.realmem, the memory that it is possible to use. The table shows the set of mappings
we chose, but this is far from optimal.

11

Aside: Schema Issues

* Scheme mismatches are a persistent problem
* Memory use
* TCP, UDP, NFS, etc statistics

— Different systems count or trace different events
* “Local” or “real” disk usage

— Which FS types are local?

* More flexible metric designs can help
— Hierarchical metrics?

* Build in appropriate metadata to avoid hard coding
— Add bits to FS info? Are file systems on a SAN local?

rooks@asroorg " @AEROSPACE

Architecture Office/Technical Computing Services

Related to the memory metric issues, there is a general class of issues with scheme mismatches.
Others include things like network protocol statistics where different implementations may present
much more or less information or present the same information is different ways. Another common
issue is determining the disk space used or available on disks and wanting to distinguish between local,
remote, and pseudo file systems. Programs tend to end up with hard coded lists of local file systems.
This scales poorly and fails to answer questions like, “Are file systems on a SAN local?*

12

Aside: IPv6 Socket Behavior

+ “By default, FreeBSD does not route IPv4 traffic to AF_INET6
sockets. The default behavior intentionally violates RFC2553 for
security reasons. Listen to two sockets if you want to accept both
IPv4 and IPv6 traffic.” — FreeBSD Kernel Interfaces Manual: inet6(4)

» IPv6 support in Ganglia resulting in breaking IPv4 support on
FreeBSD

* The socket code was actually in the Apache Portable Runtime

— It has been fixed and references to this issue appear even in
userspace

» After much discussion the code was refractored to support multiple
sockets.

» This continues to present a significant portability barrier.

rooks@asroorg " @AEROSPACE

Architecture Office/Technical Computing Services

One of the more annoying porting issues we enountered was with IPv6 support. KAME derived IPv6
stacks tend to violate RFC 2553 and disallow IPv4 mapped IPv6 sockets from receiving IPv4 data and
instead require two sockets to be opened. When ganglia introduced IPv6 support they did so using the
Apache Portable Runtime (apr) which did not understand this issue. As a result, IPv6 support disabled
IPv6 support on FreeBSD. After much wrangling, ganglia was modified to open two sockets as required
under FreeBSD. Given that code tend’s to expect this behavior to work, | remain unconvinced that this
incompatibility it worth it.

13

Sun Grid Engine

* Batch job scheduler and resource manager
— Also handles interactive jobs

* One of the leading schedulers

* Purchased by Sun and released under an open source license in
July 2001

* Ron Chen started a FreeBSD port and Aerospace completed it

rooks@asroorg y @AERospAcE

Architecture Office/Technical Computing Services

Sun Grid Engine is one of the leading open source batch schedulers and resource managers. The other
credible option is Torque, a fork of OpenPBS. Prior to Sun’s purchase of Grid Engine and the
subsequent open source release, we had been attempting to get OpenPBS to work in our environment,
but it was never stable for us (or many others on the OpenPBS mailing lists). When SGE was release
and Ron Chen started a port we leapt at the chance to try something else and started a port our selves.

14

SGE: Build System Overview

» 2900-plus line csh script called aimk
— No relation to the pvm aimk
— Each OS/architecture had separate configuration sections
» Custom dependency generator from X11
+ Makefiles
» Autoconf for 31 party packages (qgqmake, gtcsh)
— Mostly pre-generated config.h, Makefiles, etc
» Apache Ant for Java components

rooks@asroorg @AEROSPACE

Architecture Office/Technical Computing Services

The first step in porting SGE was figuring out the build system. It’s a unique and complex system
consisting of a nearly three-thousand line csh script confusingly named aimk. Within the script, each
pair of operating system and architecture has a separate configuration section. The script invokes a
dependency generator, a variety of make instances, autoconf in some cases and in recent versions
Apache Ant. Historically autoconf output is prebuilt for each platform so autoconf was not actually run
by aimk.

15

SGE: Build System Changes

* Improved multi-architecture support
— Added a single section for FreeBSD and all architectures

— Allowed autoconf to be run if pre-generated output isn’t available
for a platform

— Named FreeBSD platforms fbsd-<arch> (i.e. fbsd-i386, fbsd-
amd64)

* Names were previously adhoc (i.e. alinux for Linux on Alpha)
» Creating a FreeBSD port simplified building significantly

* No Java build support yet

— Prior versions installed java bit from binary packages, but lack of
packages and new licenses precluded this in recent releases

rooks@asroorg ® @AEROSPACE

Architecture Office/Technical Computing Services

In the process of porting the build system we introduced a number of innovations to reduce the
complexity of adding new platforms. Most of these were in the form of adding support for multi-
platform builds since we knew from the start we wanted to support at least FreeBSD i386 and amd64.
We wanted to be able to support new architectures with little or no additional change to the build
system. To the end we added a single configuration section for FreeBSD architectures and changed the
architecture naming so that FreeBSD’s platform string is always fbsd-<arch> where arch is the machine
type as given by uname —-m. We also augmented the build system so that for portions of the source
tree that depend on autoconf output, we run autoconf if no pregenerated output is available.

Because the build system requires many steps to generate a working system, we also created a
FreeBSD port early on so we can build the system repeatably with a reasonable number of command
invocations.

One section we have not yet ported is the code to build the Java interfaces. That started as an
interface to to the DRMAA job submission interface, but now includes a GUl installer. At one point we
were able to harvest Java components from the pre-build binaries, but those are no longer available
under an appropriate license so we disable all Java support in the port.

16

SGE: Portability Defines

» SGE defines a few types and printf format strings for a number of a
number of common system definitions

» The type definitions predate C99 fixed with integer types and are
very ad hoc

— Early versions also supported Cray’s unix with 64-bit ints

* Examples (FreeBSD):

#define u_long32 uint32 t
#define wuid t fmt "gu”
#define gid t fmt “gu”
#define pid t fmt "gd”
2 i Crpr v " (48 AEROSPACE

After the build system, we needed to tackle a variety of portability definitions. Early versions of Grid
Engine were ported to systems that significantly predate modern versions of the C standard such as
C99. As aresult there are several sets of type definitions for fixed width integers as well as a number
of definitions to handle differences in handling required to print a number of standard Unix typedefs
like uid_t, gid_t, and pid_t. A fair bit of this code could be simplified today, but doing so would
probably require removing support for some older systems like Cray and HP-UX.

17

SGE: Host Metrics

* Host metrics similar to Ganglia
— More scattered around the source tree and surrounded with
ifdefs
— Greping for a platform ifdef (LINUX) provides a way to find them

$ ghost -h r01n01l

HOSTNAME ARCH NCPU LOAD MEMTOT MEMUSE SWAPTO SWAPUS

global - - - - - - -

r01n01 fbsd-i386 8 0.00 3.2G 215.1M 3.0G 0.0
— 1 (/) AEROSPACE

Architecture Office/Technical Computing Services

Like Ganglia, SGE collects a number of metrics from the execution daemons on each node and uses
those results to make job placement decisions. The implementation is not as neatly divided into
metric functions, but the basic principles of porting metrics are the same. | found the easiest way to
find them was to grep for LINUX in the source tree to find all the things Linux had to implement. The
Darwin and NetBSD ports seem to have grepped for FREEBSD.

The example here shows some of the metrics collected on nodes.

18

SGE: Job/Process Metrics

» Process and job data are tracked though a system called Portable
Data Collector (PDC) which emulates much of the Irix job system

— Processes in a job are tracked by adding an extra per-job group
to the group list of any process

— To find process resource use, the process table is walked and
processes with the supplemental group are counted

— A similar trick is used to kill the processes in a job

* Our current implementation uses libkvm to obtain process lists and
access process statistics

— A sysctl based version would be desirable

rooks@asroorg " @AEROSPACE

Architecture Office/Technical Computing Services

One place where SGE’s metrics differ from Ganglia is that SGE wants to track resource use by all the
processes that make up a job. This is done in the Portable Data Collector sub system. On Irix, there is a
mechanism for attaching job IDs to different processes and then querying resource use for the process
and all its children. This feature does not exist on most other platforms so SGE implements a cleaver
hack to achieve a similar effect. The trick is that they allocate an otherwise unused group on each
node and then add it to the group list for each process. Since the group list is copied to each child on
fork() and ordinary users can not adjust their group list this provides a tag which can be used to detect
the processes that make up a job. When SGE wants to determine the cumulative resource use of a job,
it walks the process table using libkvm and totals all resource use. Recent changes to FreeBSD
(available in 7.3 and 8.0) will allow the use of sysctl to perform this task, but that will not be a portable
option for some time.

19

Aside: Signal Handling

* SGE needs the ability to install persistent signal handlers
* SGE used SysV'’s sigset() which is in FreeBSD

* BSD’s signal(3) supports this which differs from POSIX

* Convinced Sun to switch to sigaction(2)

“To make certain that no one could write an easily portable
application, the POSIX committee added yet another signal
handling environment which is supposenot d to be a superset of
BSD and both System-V environments.” — Jim Frost

http://www.frostbytes.com/~jimf/papers/signals/signals.html

rooks@asroorg » @AEROSPACE

Architecture Office/Technical Computing Services

Another interesting portability issues was introduced when other SGE developers fixed some bugs by
adding persistent signal handlers. Unfortunately, they used the easy to use, but non-portable sigset()
function. POSIX defines the sigset() function, but FreeBSD does not implement it. In practice our
implementation of signal() is equivalent to sigset(), but POSIX compliant implementations are not. In
the end, | was able to persuade them to switch all instances of sigset() or signal() to sigaction() which is
well defined, but has the unfortunate characteristic of requiring multiple lines of code to replace each
simple signal() or sigset() call. The Jim Frost quote here does a good job of portraying my feelings
about the state of signal handling.

20

Open MPI

* Open MPI implementations the Message Passing Interface
— Primary toolkit for building message passing parallel applications
— Provides a rich common API

* Open MPI is Open Source

— Basis for commercially supported toolkits such as Sun HPC
Tools

* One of a few leading MPI implementations

— Derived in part from LAM-MPI ___‘_J”

———— 2 (/) AEROSPACE
Architecture Office/Technical Computing Services

Open MPl is a leading open source implementation of the Message Passing Interface aka MPI. MPl is
the primary toolkit for building message passing parallel application. These are applications where
multiple process coordinate their computations with messages. MPI hides the details of the

underlying network beneath a common API. Open MPI is also the basis of commercial toolkits such as
Sun’s HPC toolkit.

Open MPI: Porting

* One of the easier ports so far
* Highly modular code base with advanced autoconf scripts
* Built on several platforms at launch

— Years of HPC experience prove the need for portability

* We needed to add support for backtrace() and backtract_symbols()
from glibc

— The devel/libexecinfo port already provided this

* Anot yet ported:
— PLPA: Portable Linux Processor Affinity
* Hides ABI differences between different processor affinity interfaces
¢ Direct implementation using cpuset() should work on FreeBSD

rooks@asroorg 2 @AEROSPACE

Architecture Office/Technical Computing Services

Open MPI was overall on of the easiest ports we have done so far. The code is highly modular with
extensive use of autoconf scripts to detect features. It’s clear the development team has taken to
heart the historical need for portability in HPC code, especially middleware. The one feature we
needed in the initial port was the backtrac() and backtrac_symbols() functions glibc implements.
Fortunately the devel/libexecinfo port already provides that functionality so we simply added the
necessary autoconf bits to do detect it and we had a working port.

The one piece we know has not yet been ported is the CPU affinity support which relies on a side
project of Open MPI called Portable Linux Process Affinity (PLPA). PLPA exists to deal with the fact that
at least three different syscall ABls were shipped by different major Linux vendors before a standard
version was imported into the official tree. In FreeBSD we don’t have to worry abou this problem so a
simple mapping between the cpuset() api and PLPA should be possible.

22

Aside: Supporting Multiple MPI Implementations

* Open MPI is one of several MP| implementations
* Most sites find it useful to support multiple implementations
» Ports currently install in non-conflicting locations
— net/lam - ${PREFIX}
— net/mpich2 - ${PREFIX}/mpich2
— net/openmpi - ${PREFIX}/mpi/mpich2
+ Consistent locations would be better

* MPI implementations provide a series of compiler wrappers to aid in
portability of linking

— Provide a general wrapper system similar to javavmwrapper?

rooks@asroorg » @AEROSPACE

Architecture Office/Technical Computing Services

In the HPC world it is common to have several implementations of keep tools such as MPI
implementations or compilers available so users can choose the best tool for their particular
application. With MPI this actually results in a combinatorial explosion as each MPI instance includes
compiler wrapper scripts for the particular compiler they were build with. Current FreeBSD ports of
MPI implementations each install an a unique location, but the choices are all different. None of them
currently handle multiple compiler versions. In my view, it would be ideal if MPI builds installed in
consistent locations and multiple compiler versions were supported for the same MPI. Ideally | would
also like to see an mpiwrapper similar to the javavmwrapper to allow users to easily switch between
MPI versions without too much difficulty.

23

Summary of Portability Issues

» Schema Conflicts: memory use, etc

» |Pv6 socket behavior

* Weird build systems

» Poor choices of data types

» Lack of good interfaces to some data
» Signal hander setup

* Need libexecinfo functionality in libc

rooks@asroorg " @AEROSPACE

Architecture Office/Technical Computing Services

Having discussed our experiences porting Ganglia, Sun Grid Engine, and Open MPI, | would like to recap the major
portability issues | have discussed.

Scheme conflicts for operating system metrics are likely to remain a perpetual problem, but | think there are ways
the situation could be improved. The most important of these is it allow schemas to be hierarchical and flexible so
that an accurate view can be provided while still allowing general purpose systems to make decisions. In many
cases, schemas seem to fall for the trap of generalizing from a single instance and do not rethink often enough.

Another source of compatibility issues is IPv6 socket behavior for IPv4 mapped sockets. BSD IPv6 stacks are non
compliant with RFCs. It may be the case that enough software has adapted at this point that changing the
standard would be the appropriate response, but | believe individual BSD’s should reconsider this KAME decision.

An ongoing issues, especially with long established projects is weird build systems. There isn’t really a good
general strategy for this problem, but | advise porters to watch out for them and encourage projects to spend the
time to reimplement the most strange unconventional ones.

I also discussed the portability issues caused by poor choice of data types. Like weird build systems, this tends to
be more common in old code where standards were missing useful features. | encourage projects to purge
support for ancient platforms and a decent pace to allow code to take advantage of modern standards.

Another issue | have not talked about explicitly, but which impacts a fair bit of middle ware is lack of good
interfaces to access important data. For instance, the need to use a libkvm interface to walk the process table is a
sign of insufficiently strong interfaces in the pass. There are now proper interfaces which help resolve these
issues, but we are stuck with significant historical baggage. With open source operating systems, porters should
consider the possibility of adding new interfaces along with hacking around their lack.

Signal handler setup remains a bit of a problem. The lack of portable APIs other than the highly verbose
sigaction() interface seems to lead developers to choose non-portable interfaces. POSIX would do well to revisit
this issue and implement an actually simple interface will useful and well defined semantics.

A final issue for FreeBSD in particular is the need for the backtrace*() functions in libc. This just seems like a good
idea and we could probably implement it very efficiently using CTF data now that we have DTrace tools in the base
system

24

More Tools to Port

+ PLPA: Portable Linux Processor Affinity
* PAPI based analysis tools
— Potential major win for FreeBSD
» Eclipse Parallel Tools Platform
— http.//www.eclipse.org/ptp/
*+ ROCKS
— http://www.rocksclusters.org/

rooks@asroorg @AEROSPACE

Architecture Office/Technical Computing Services

Now that I've talked about porting several HPC tools, I'd like to challenge the audience with some other
interesting targets for porting. I've already mentioned PLPA so | will not cover it in more detail here.

An area that may befit FreeBSD greatly is porting the growing number of PAPI applications to FreeBSD.
PAPI (http://icl.cs.utk.edu/papi/) attempts to provide a consistent interface to hardware performance
counters and it has been ported to FreeBSD HWPMC framework. It is widely used in the HPC
community and a number of interesting tools have been built on it. What is interesting from the
FreeBSD perspective is that the main line of Linux has not incorporated the patches for performance
counters which have been around for over a decade. As a result, only patched kernels can use PAPI.
This potentially gives FreeBSD a major advantage since we support HWPMC in our base source tree.

Another interesting tool to port would be the Eclipse Parallel Tools Platform (PTP). PTP aims to provide
a complete, open source set of parallel tools. We already support Eclipse, Open MPI, and MPICH2
which are the only dependencies required beyond Eclipse CDT.

A final challenge and by far the most complex is porting FreeBSD to the ROCKS cluster environment.
ROCKS is a system for installing and maintaining computing clusters. It works from the basis of an
operating system install that can be initiated from PXE and then rides on top of the operating system’s
package manager to install and configure interesting components. ROCKS was historically based
around Red Hat or CentOS Linux verisons, but has been ported to Solaris recently so the worst of the
direct Linux and RPM dependencies should be sorted out. | believe a basic port should be fairly
straight forward given that FreeBSD is easy to network boot and easy to install manually. Once that’s
done our packaging system should be entirely adiquate to ROCKS needs.

In general | encourage people to port more HPC tools to FreeBSD. | think the project has a compelling
performance story and a great set of tools to support developers.

25

Conclusions

* We have ported a number of HPC related tools to FreeBSD as part
of running a FreeBSD cluster

— Ganglia, SGE, Open MPI
» Portability challenges exist
— General application issues
— FreeBSD issues
» FreeBSD has opportunities to grab market share
— PAPI

* Go out and port something!

rooks@asroorg % @AEROSPACE

Architecture Office/Technical Computing Services

In conclusion, we have ported a number of tools to FreeBSD. These include Ganglia, SGE, and Open
MPI as previously discussed, but also pssh and pypvm. We find that a number of portabitly challenges
exist, both in terms of poorly written code and FreeBSD specific issues like IPv4 mapped IPv6 sockets.
It seems clear there are areas were FreeBSD can take advantage of ongoing issues in the Linux
community. In particular, porting PAPI based tools and the fact that only one cpuset API/ABI exists
provide opportunities.

If you want to help FreeBSD succeed, the best advice | can give is to get out there and port something!

26

Disclaimers

All trademarks, service marks, and trade names are the property of
their respective owners.

rooks@asroorg 2 @AERospAcE

Architecture Office/Technical Computing Services

27

