Crypto Acceleration on FreeBSD

Philip Paeps
philip@FreeBSD.org

The FreeBSD Project

BSDCan 2009 — Ottawa, Canada
8 May 2009
Outline

1 Background and Context
 - History and Purpose
 - List of Components
 - Adoption in the System

2 Implementation and Architecture
 - Architectural Overview
 - Modes of Operation
 - Software Interface

3 Hardware Acceleration
 - Hardware Acceleration
 - Drawbacks and Pitfalls

4 Works in Progress
 - Session-Management Layer
 - Improve Parallelism
 - More Hardware Support
Outline

1 Background and Context
 - History and Purpose
 - List of Components
 - Adoption in the System

2 Implementation and Architecture
 - Architectural Overview
 - Modes of Operation
 - Software Interface

3 Hardware Acceleration
 - Hardware Acceleration
 - Drawbacks and Pitfalls

4 Works in Progress
 - Session-Management Layer
 - Improve Parallelism
 - More Hardware Support
In The Beginning...

- Developed for OpenBSD by Angelos D. Keromytis
- Consistent software and hardware interface
- Fairly modular and extendable design
- Ported to FreeBSD by Sam Leffler in 2002
- Originally particularly intended for IPSEC
- Very little of the original code remains
List of Components

- Kernel “library” for crypto operations
- Generic software crypto device
- Support for acceleration hardware
- Interface to userland for acceleration
Kernel “Library” for Crypto Operations

- “OpenSSL of the kernel”
- Reduces code duplication like a library
- Fairly self-contained and maintainable
- Most functionality is in `<opencrypto/cryptodev.h>`
Software Crypto Device

- Implemented as a “transformation” system
- Supports most relevant crypto transformations
 - MD5, SHA1, Rijndael, Camellia, . . .
 - Very flexible and easy to extend
- Behaves exactly like a “hardware” device
Acceleration Hardware

- Crypto acceleration hardware widely available
- Currently mostly useful for “slow” system
- Framework automatically takes advantage of hardware
- Uses software if no hardware is present
Interface to Userland

- As simple as ioctl on /dev/crypto
- Asynchronous session-oriented interface
- Mainly used by the OpenSSL “cryptodev” ENGINE
- Not on by default — some serious drawbacks!
Consumers in the Kernel

- IPSEC
- Block devices (GELI)
- Wireless (IEEE 802.11)
- ZFS
- GSSAPI
OpenSSL Engine

- Limited adoption due to default disabled
- This is perhaps a good thing
- Patches floating around for many applications
- Often < 10 lines of code needed
Outline

1 Background and Context
 - History and Purpose
 - List of Components
 - Adoption in the System

2 Implementation and Architecture
 - Architectural Overview
 - Modes of Operation
 - Software Interface

3 Hardware Acceleration
 - Hardware Acceleration
 - Drawbacks and Pitfalls

4 Works in Progress
 - Session-Management Layer
 - Improve Parallelism
 - More Hardware Support
Architectural Overview

Architectural Overview

/trdev/crypto

IPSEC
GELI
...

<opencrypto/cryptodev.h>

opencrypto framework

cryptosoft
glxsb(4)
hifn(4)
ubsec(4)
...

Philip Paeps
Crypto Acceleration on FreeBSD
Modes of Operation

Session-based mode
- Information cached per driver (perhaps in hardware)
- No need to repeat initialization for every operation
- Multiple operations can be chained together

Sessionless mode
- Used mainly for keying operations or hashing
- Input and output parameters passed in with request
- No support for multiple operations
Asynchronous Interface

- Both modes of operation are asynchronous
- Consumers are not necessarily processes
- Drivers not able to `sleep(9)`
- Callback mechanism for status and errors
Kernelspace Usage

- #include <opencrypto/cryptodev.h>
- Initialize session parameters once
- Multiple operations can be chained together
- Framework takes care of the rest
Outline

1 Background and Context
 - History and Purpose
 - List of Components
 - Adoption in the System

2 Implementation and Architecture
 - Architectural Overview
 - Modes of Operation
 - Software Interface

3 Hardware Acceleration
 - Hardware Acceleration
 - Drawbacks and Pitfalls

4 Works in Progress
 - Session-Management Layer
 - Improve Parallelism
 - More Hardware Support
Supported Devices

- `glxsb(4)` — AMD Geode
- `hifn(4)` — Hifn
- `padlock(4)` — VIA Padlock
- `safe(4)` — SafeNet
- `ubsec(4)` — Broadcom/Bluesteel
Driver-side API

- Drivers register algorithms they support with the framework
- Callbacks for session management and for dispatching work
- Sessions are managed by the drivers
- Currently no real “prioritization” support
- Mostly compatible with OpenBSD for now
- No support for cyphertext stealing (*point to Doug*)
Kernel-side Issues

- Sessions are managed by device drivers
- No (real) way to migrate sessions
- Very minimal support for prioritization
- Limited flow-control opportunities
Trends in Hardware

- Acceleration hardware becoming faster
- Moving from slow(ish) PCI bus to integrated
- Becoming more and more like co-processors
Further Problems in Userland

- OpenSSL ENGINES are “all or nothing”
- Context switching often very undesirable
- No heuristic for deciding if acceleration makes sense
- On a fast machine, software is often fastest
Outline

1 Background and Context
 - History and Purpose
 - List of Components
 - Adoption in the System

2 Implementation and Architecture
 - Architectural Overview
 - Modes of Operation
 - Software Interface

3 Hardware Acceleration
 - Hardware Acceleration
 - Drawbacks and Pitfalls

4 Works in Progress
 - Session-Management Layer
 - Improve Parallelism
 - More Hardware Support
Session-Management Layer

- Add support for migrating sessions between drivers
- Enable load-balancing across multiple devices
- Heuristics to determine if software is faster
- Tell userspace (OpenSSL) if no hardware is available
Architectural Overview

/dev/crypto

Session Management Layer
- Improve Parallelism
- More Hardware Support

Session Layer
- IPSEC
- GELI
- ...
- <opencrypto/cryptodev.h>

opencrypto framework
- cryptosoft
- glxsb(4)
- hifn(4)
- ubsec(4)
- ...

Trouble
Kernel

Philip Paeps
Crypto Acceleration on FreeBSD
Improve Parallelism

- Hardware is evolving towards multiple execution blocks
- Provide a method for flow-control towards hardware
- Add support to pin sessions to a single CPU
More Hardware Support

- Currently, mostly low-end embedded hardware supported
- Some really sexy high-end devices are available
- Often a small matter of programming and access to hardware
Questions? Comments?