
© The Aerospace Corporation 2008-2009

Isolating Cluster Jobs for
Performance and Predictability

Brooks Davis <brooks@aero.org>

Enterprise Information Systems

The Aerospace Corporation

BSDCan 2009
Ottawa, Canada
May 8-9, 2009

2

Breadth and depth of technical and programmatic expertise

The Aerospace Corporation
Who We Are

• Since 1960 The Aerospace Corporation (Aerospace) has operated a
federally funded research and development center (FFRDC) in
support of national-security, civil and commercial space programs.

– The Aerospace FFRDC provides scientific and engineering support for
launch, space, and related ground systems

– It also provides the specialized facilities and continuity of effort required for
programs that often take decades to complete.

• The FFRDC's core competencies
– launch certification
– system-of-systems engineering

– systems development and acquisition

– process implementation
– technology application

•The Aerospace Corporation (cont.)

• Over 2400 engineers
– Virtually every discipline represented and applied

• Vast problem space
– Everything related to space

• Engineering support applications of all sizes
– From small spreadsheets
– ...to large traditional applications
– ...and large parallel applications

A large and complex user and application base

•The Fellowship Cluster
HPC at The Aerospace Corporation

• 352 dual-processor nodes
– 1392 cores

• Gigabit Ethernet network
– 10Gbps for switch-switch and

storage links

• FreeBSD 6.x i386
– Planning a move to 7.1 amd64

• Sun Grid Engine scheduler

• ~40TB of NFS storage
– Sun x4500

• Other resources
– Two smaller clusters coming soon
– Some large SMP systems

The Aerospace Corporation's primary HPC resource since 2002

Outline
The Rest of the Talk

• The Case for Resource Sharing

• The Trouble With Sharing

• Interesting Sharing Issues

• Some Possible Solutions
– Whole Node (or Larger) Allocations
– Gang Scheduling
– Single Application (Sub-)Clusters
– Virtualization
– Virtual Private Servers
– Resource Limits and Partitions

• Our Experiments
– SGE Shepherd Wrapper
– Memory Backed Temporary Directories
– Variant Symbolic Links
– CPU Set Allocator

• Conclusions and Future Work

The Case for Resource Sharing
Efficient Use of Scarce Resources

• Unique resources like The Fellowship Cluster need to be shared
– Users need things at different times
– We can not afford to buy cluster for each user
• Even if they could use it all the time, we could not afford to administer all

of them
• Users demand quick access to partial results

– If we block one user completely while another uses resources inefficiently
we increase the time to a partial solution

Sharing is required for efficiency

The Trouble With Sharing
Contention Leads to Increased Overhead

• Resource contention happens
– Users sometimes need the same thing at the same time
– Some jobs use more resources than they request

• Contention causes problems with performance
– Job completion time is difficult to predict in the face of contention
– Sufficient contention raises OS overhead
• Mostly due to context switching and swapping
• Some due to queue overruns

Sharing is required for efficiency, but risks increased overhead

Interesting Sharing Issues
Things we care about when sharing resources

• Mix of small and large jobs makes sharing nodes valuable
– We would like to see maximum utilization of all node resources

• Would like co-located jobs to not impinge on each others resources
– CPU
– Memory

– Disk space

– I/O bandwidth

• Ideally jobs should have their own security context
– No way to interfere with or communicate with each other
– ...Unless specifically requested

We want strong isolation and efficient sharing, two opposing goals

Whole Node (or Larger) Allocations
Strong Isolation, But Low Granularity

• Supercomputing centers often allocate whole nodes or even require
larger allocations

– The Texas Advanced Computing Center's Ranger cluster requires that users
utilize full 16-core nodes

– By far, the most popular approach today

• Pros:
– Users can not interfere with each other's disk, memory, or network space

and bandwidth
– OS or hardware roblems triggered by short jobs do not effect long running

ones
– Security considerations are reduced due to lack of concurrent node access

• Cons:
– Jobs must be of node granularity or resources are wasted

Good for big science, but a bad fit for our job mix

Gang Scheduling
Time Sharing in the Large

• Time sharing on the scale of a whole or partial cluster
– Jobs are given a time slice (usually on the order of hours)
– At the end of their time slice, the job is suspended and another scheduled or

resumed.
– Sometimes approximated with short maximum job run times.

• Pros:
– Allows jobs to run without interference from each other
– Partial results can be returned sooner than with run to completion

• Cons:
– Context switch costs are high
• Network connection must be re-established
• Data must be paged back in

– Lack of generally useful implementations
– Less useful with small jobs, especially those that do not need full nodes

Gang scheduling is useful, but not a good fit for our job mix

Single Application/Project (Sub-)Clusters
Maximum Isolation

• Clusters allocated on demand or for the duration of a project

• Systems like EmuLab, Sun's Project Hedeby, or the Cluster on Demand
 work at Duke allow rapid deployment

• Pros
– Complete isolation
– Ability to tailor nodes to job needs

• Cons
– Course granularity
• Does not easily support small jobs

– Expensive context switches (up to tens of minutes)
– Users can interfere with themselves
– No general way to recapture underutilized resources

Powerful isolation, but high costs

Virtualization
A Cost Effective Route to Sub-Clusters?

• Allows relatively rapid deployment of node images

• Multiple images can share a node

• Pros
– Strong isolation
– Ability to tailor node images to job needs
– Possible to recovery underutilized resources

• Cons
– Incomplete isolation due to shared hardware
– Users can interfere with themselves
– No way to efficiently isolate small jobs
– Significant overhead
• CPU slowdown
• Duplicate disk and memory use

Virtualization may make sub-clusters practical

Virtual Private Servers
An Alternative from the Internet

• Developed by the internet hosting industry to support large number of
clients on a single host

• Pros
– Small overhead vs. virtualization
• Makes per-job images practical for small jobs

– Ability to tailor images to job needs
– Only virtualize what needs virtualizing

• Cons
– Incomplete isolation
– Reduced flexibility in images vs. virtualization
• e.g. no Windows images on FreeBSD

A lightweight alternative to virtualization

Resource Limits and Partitions
Leveraging Existing Features

• All Unix-like operating systems support per-process resource limits
– Schedulers support the most common ones

• Most support various forms of resource partitioning
– Memory disks
– Quotas
– CPU affinity

• Pros
– Use existing operating system features
– Easy integration in existing schedulers

• Cons
– Incomplete isolation
– No unified framework in most operating systems
• Irix per-job resouces and Solaris project are exceptions

– Typically no or limited limits on bandwidth

There is room to enhance schedulers to use more OS features

Our Experiments
What Will Work on Fellowship

• We need a solution that handles our wide range of job types
– Single application/project clusters
• Fully isolate users
• Require virtualization to be efficient in our environment
• Don't handle very small jobs well

– Resource limits and partitions
• Implementable with existing functionality
• Achieve useful isolation

– Virtual Private Servers
• Allow per-job differences in operating environment
• Isolate users from changes in the kernel
• Provide strong isolation for security purposes

• Resource partitions and VPS technologies will have similar implantation
requirements

Focus on partitioning, then VPS technologies

SGE Shepherd Wrapper
Restricting Job Execution Environment

• The SGE shepherd is the parent of all processes in each job
– Collects usage statistics
– Forwards signals to children
– Starts remote job components (in tightly integrated jobs)

• Original plan involved modifying shepherd to implement restrictions
• SGE allows specification of an alternate location for the
sge_shepherd program
• We have implemented a wrapper script that runs the shepherd indirectly

– precmd hook performs setup
– cmdwrapper hook adds additional programs to the front of the command
• i.e. env FOO=BAR sge_shepherd

– postcmd hook performs clean up
– Implemented in Ruby

Shepherd Wrapper allows rapid prototyping and implementation

Memory Backed Temporary Directories
Reducing Contention for Temporary Storage

• SGE manage paths for per-job temporary storage
– Creates a temporary directory on each node for use by each job
– Points TMPDIR environmental variable to directory
•Well designed Unix programs store temporary files in TMPDIR by default

– After execution temporary directory is destroyed
– These paths share a common parent directory
• Jobs that use too much storage can cause problems for others

• We have implemented a wrapper that mounts a memory backed file
system (a swap backed md(4) device) over the SGE TMPDIR

– Users can request an allocation of a specific size
– Since allocations are set at job start up time, jobs should not unexpectedly

run out of space

• As a bonus, memory backed storage will improve performance

Separating temporary storage improves reliability and performance

Memory Backed Temporary Directories (cont.)
Example

$ cat foo.sh
#!/bin/sh
echo "TMPDIR = $TMPDIR"
df -h ${TMPDIR}
$ qsub -l tmpspace=100m -sync y foo.sh
Your job 156 ("foo.sh") has been submitted
Job 156 exited with exit code 0.
$ cat foo.sh.o156
TMPDIR = /tmp/156.1.all.q
Filesystem Size Used Avail Capacity Mounted on
/dev/md0 104M 4.0K 95M 0% /tmp/156.1.all.q
$

Quick and effective isolation of TMPDIR

Variant Symbolic Links
Why TMPDIR Is Not Enough

• Memory backed TMPDIR works for well designed applications
• Badly designed applications hard code /tmp which defeats TMPDIR

– Can result in exhaustion of shared resources
– If full paths are hard coded can result in data corruption and bizarre failures
• Accidental sharing of data between jobs
• Confusion in interprocess communications

• What we need is per-job /tmp
• Variant symlinks can provide this and other partial file system

virtualizations

Memory backed TMPDIR only solves part of the problem

Variant Symbolic Links
Introduction to Variant Symlinks

• Variant symbolic links are symlinks that contain variables that are
expanded at runtime

– Allows paths to differ on a per-process basis
– Example

$ echo aaa > aaa
$ echo bbb > bbb
$ ln -s %{FOO:aaa} foo
$ cat foo
aaa
$ varsym FOO=bbb cat foo
bbb
$ sudo varsym -s FOO=bbb
$ cat foo
bbb

Variant symbolic links provide partial file system virtualization

Variant Symbolic Links
Our Implementation

• Derived from DragonFlyBSD implementation
– Changed significantly

• Scopes
– System > privileged per-process > user per-process
– No user or jail scope (jail coming eventually)
– Scope precedence reversed relative to DragonFlyBSD

• Default value support
– %{VARIABLE:default-value}

• Use to % instead of $ to avoid confusion with environmental variables
– Not using @ to avoid conflicts with AFS and NetBSD implementation

• /etc/login.conf support
• No automatic variables (i.e. @sys)
• No setting of other processes variables

Focus on simple, easy to reason about primitives

CPU Set Allocator
Giving Jobs Their Own CPUs

• In a typical SGE configuration, each node has a “slot” for each CPU
• Jobs are allocated one or more slots

– One for plain jobs
– One or more for jobs in parallel environments

• No actual connection between slots and CPUs
– Badly behaved jobs may use more CPUs than they are allocated
– Earlier versions of SGE supported tying slots to CPUs on Irix

• We have used our SGE shepherd wrapper and the cpuset functionality
introduced in FreeBSD 7.1 to bind jobs to CPUs

– Allocations stored in /var/run/sge_cpuset
– Naïve recursive allocation algorithm
• No cache awareness
• Try best fit, then minimize new fragments

– Should port easily to other OSes

Tying jobs to CPUs keeps interference to a minimum

CPU Set Allocator Benchmarks
Benchmark Platform

• System
– Dual Intel Xeon E5430 @ 2.66GHz
• 8 cores total

– 16GB RAM
– FreeBSD 7.1-PRERELEASE (r182969) amd64
• Needed for cpuset(1)

– SGE 6.2
• Benchmark

– N-Queens problem
• Simple integer workload
• Minimal memory and no disk use

– nqueens-1.0 (ports/benchmarks/nqueens)
– Measured command: qn24b_base 18
– Load command: qn24b_base 20
• Invoked as needed to generate desired load

Keeping the benchmark simple allows for easy reproduction

CPU Set Allocator Benchmarks (cont.)
Results

CPU Sets improve predictability and performance

Baseline

Runs 8 8 17 11 12

Average Run Time 345.73 347.32 393.35 346.63 346.74

Standard Deviation 0.21 0.64 14.6 0.05 0.04

Difference From Baseline 0.59 46.63 * *

Margin of Error 0.51 10.81 * *

Percent Difference From Baseline 0.17% 13.45% * *

7 Load
Procs

8 Load
Procs

7 Load
Procs w/
cpuset

8 Load
Procs w/
cpuset

* No difference at 95% confidence

Conclusions and Future Work
The Future of Job Isolation

• Useful proof of concept isolations implemented

• Virtual private servers per job
– Isolate users from kernel upgrades
• Allow performance improvements without upgrade costs

– Allow multiple OS versions
• amd64 and i386 on the same machine
• Full Linux environment on FreeBSD hosts

– DTrace on Linux

• Limits on or reservations for network or disk bandwidth
– Network bandwidth limits possible for socket IO, hard for NFS traffic
– Disk IO reservations a la Irix XFS could help some job type

• Per job resource limits a la Irix jid_t or Solaris projects in FreeBSD

Job isolation is feasible and useful

Questions?

http://people.freebsd.org/~brooks/pubs/bsdcan2009/

Disclaimer

• All trademarks, service marks, and trade names are the property of their
respective owners.

