
Remote and mass management of
systems with finstall

Ivan Voras
<ivoras@freebsd.org>

TOC

What is it – description of the idea
A few words about the protocol
Details of the implementation
Examples
Future plans

What is this all about?

First there was finstall [pronounced eff-in-stall]
Google SoC project
Not abandoned
But stalled, ENOTIME, ENOMONEY

Important concept of finstall: complete
separation of the GUI and the back-end
The back-end does the work
Communicates with the client via a RPC-like
protocol

Frontend - Backend

The idea

Use the backend part for system installation
and configuration via direct interface
Enables remote management of systems
The obvious question: is it similar to Kickstart?

Yes, it's going in roughly the same direction
It's not there yet
It needs much more automation
Polish the rough edges

The backend's name is SysToolD

Backend capabilities

Simple XML-RPC protocol
Developed in Python so some functions are
dynamically typed – will need to change in the
future

Offers high(ish)-level functionality to clients
Get / set basic system information
Get / set data from config files
Device partitioning, formatting (newfs), mounting
Network configuration
...

A bit about implementation

trunk/bybackend in Subversion, in SF.Net
Written in Python
Good sides:

Easy to prototype
Easy XML-RPC
Easy string, XML parsing, etc.

Bad sides:
Needs Python
Cannot directly access C structures

Implementation (2)

Python implementation invokes command-line
system utilities (like sysctl(8), newfs(8))
Some argument passing, parsing, etc.
The backend is intended to run as a
background daemon
The daemon optionally issues UDP broadcasts
for discovery (for the installer)

RPC Functions (1)

GetHostId()
GetDMESG()
GetHostName()
GetPhsyMem()

RPC Functions (2)

GetDrives()
GetDrivePartitions()
GetMountPoints()
Mount()

RPC Functions (3)

GetLoaderSetting() / SetLoaderSetting()
GetConf() / SetConf/()
GetHostName() / SetHostName()
GetShells()
AddUser()
GetNetworkInterfaces() /
ConfigureNetworkInterface()
SetDefaultRouter()
… etc.

How to use it

Step ONE:
The system needs to run systoold.py
a) regular system – rc.d
b) PXE boot for installing
c) bootable ISO image for installing

Step TWO:
Access the daemon's services with XML-RPC
Python XML-RPC
Any other XML-RPC

Few words about XML-RPC

POST /RPC2 HTTP/1.0

User-Agent: Frontier/5.1.2 (WinNT)

Host: betty.userland.com

Content-Type: text/xml

Content-length: 181

<?xml version="1.0"?> <methodCall>
<methodName>examples.getStateName</methodName>
<params> <param> <value><i4>41</i4></value> </param>
</params> </methodCall>

XML-RPC libraries

“Script” languages have it easy...
Python, Perl, PHP, Flash, JavaScript etc.

C, BSD-Licensed:
http://xmlrpc-c.sourceforge.net/
Java, Apache Licensed:
http://ws.apache.org/xmlrpc/
.Net / C#, MIT License:
http://www.xml-rpc.net/

C example (the most complicated)

result = xmlrpc_client_call
 (&env,
 “http://xmlrpc.host/”,
 “GetSomething”,
 "(ii)",
 (xmlrpc_int32) 5,
 (xmlrpc_int32) 7);

Modes of use

SysToolD doesn't enforce a mode of use – it's a
tool for configuration and administration
INSTALL mode

Can be used to install a fresh system
The front-end is the installer which connects to
localhost (or optionally to a remote host)

MANAGEMENT mode
Used to (re)configure existing systems
Usually used by remote clients

Modes of use

SysToolD doesn't enforce a mode of use – it's a
tool for configuration and administration
INSTALL mode

Can be used to install a fresh system
The front-end is the installer which connects to
localhost (or optionally to a remote host)

MANAGEMENT mode
Used to (re)configure existing systems
Usually used by remote clients

Example 1

from xmlrpclib import ServerProxy
host = ServerProxy(“http://10.0.0.10:1025”)

host.InstallRemotePackage(“apache22”)
host.SetConf(“apache22_enable=\”YES\””)
host.SetLoaderSetting(“accf_http_load=\”YES\””)

Example 1

from xmlrpclib import ServerProxy
host = ServerProxy(“http://10.0.0.10:1025”)

● Boilerplate code – create a proxy
object for XML-RPC

● Looks the same in every language
● Simple

Example 1

host.InstallRemotePackage(“apache22”)
host.SetConf(“apache22_enable=\”YES\””)
host.SetLoaderSetting(“accf_http_load=\”YES\””)

● The “meat” of the script
● Note: error checking is pretty much
non-optional here

Real-world example

Needs more automation
Generally:

 Have a list of SysToolD-enable hosts
OR...
 Gather the list by listening to broadcasts

Inspect environment(s) of host(s)
Create threads and (re)configure each host in
parallel

Security

SysToolD is not a remote root shell but is as
close to it as doesn't matter

Can modify rc.conf and reboot
Need to bar unwanted accesses
There is no fine-grained access control once
users get to SysToolD
Current solution: SSL certificates

Users need a certificate signed by a server-
accepted CA

Current state of development

A bit slower than expected – part of finstall
Can pick up if funding is found

Features get added when needs shows
XML-RPC has proven to be a good and robust
thing for this kind of usage
Python has proven to be good for development
with minimal problems

Future development

Automation
CLI tools
GUI tools

The idea is to have a list of machines (or a icon
spread) and have users right-click on a machine
and say “run this operation”

Would like it to remain in Python because of
easy development

If the protocol is retained, the implementation
details can change

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

