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Abstract

The existing device driver framework in
FreeBSD works fairly well for many tasks.
However, there are a few problems that are
not easily solved with the current design.
These problems include having ”real” device
drivers for low-level hardware such as clocks
and interrupt controllers, proper resource dis-
covery and management, and allowing most
drivers to always probe and attach in an envi-
ronment where interrupts are enabled. I pro-
pose extending the device driver framework
to support multiple passes over the device
tree during boot. This would allow certain
classes of drivers to be attached earlier and
perform boot-time setup before other drivers
are probed and attached. This in turn can be
used to develop solutions to the earlier list of
problems.

1 Introduction

One of the most basic tasks of an operat-
ing system is managing hardware resources.
This includes directly controlling the hard-
ware and providing interfaces to the hardware
for application software. Logical functions of
hardware resources are commonly called de-
vices, and the software that controls a spe-
cific device is called a device driver. Devices
may also use lower-level resources to interface
to the rest of the system (examples include
I/O ports, a memory-mapped I/O window,
or interrupt signals). In some cases a device
may provide lower-level resources for use by
other devices. An example of this would be
an interrupt controller which provides inter-
rupt lines to other devices.

There is a wide assortment of hardware de-
vices which require a correspondingly wide
assortment of device drivers. To make it eas-
ier to write device drivers, operating systems
typically provide a device driver framework.
This framework might organize devices into
a structure and/or name space. It also usu-
ally provides abstractions for managing the
lower-level resources used by a device.

At its inception, FreeBSD inherited the
“old-config” device driver framework from
4.2BSD [2]. This device driver framework suf-
fered from the limitation that the knowledge
of every device in a system was compiled into
the kernel. Changing the hardware in a sys-
tem required recompiling the kernel to update
its configuration table or to add and remove
drivers.

Hardware, however, was becoming more
dynamic and intelligent. Some newer buses
such as PCI and ISA Plug’n’Play provided
mechanisms to enumerate devices on the bus.
Other buses such as PCCard also supported
adding and remove devices at run-time.

Although FreeBSD had extended “old-
config” to add device entries for self-
identifying buses such as PCI, new device
drivers could not always be loaded into the
system after boot. Instead, each bus driver
had to provide its own infrastructure to man-
age this. The PCI bus driver did not support
it at all. The PCCard bus driver did sup-
port loading drivers, however, it required a
userland daemon to assign drivers to devices.
This was problematic as the knowledge about
which devices a driver supported was not con-
tained in the driver itself but required patch-
ing a separate global config file.



In FreeBSD 3.0, a new device driver frame-
work called “new-bus” [1] was developed as
part of the port to the Alpha architecture.
This framework was ported to the i386 ar-
chitecture in FreeBSD 4.0 and has been used
on all FreeBSD architecture ports since. One
of the key differences between “new-bus” and
“old-config” is that with “new-bus” the ker-
nel no longer contains a compiled-in list of
static devices. Instead, devices on non-self-
enumerating buses such as ISA are described
by meta-data that is separate from the kernel.
Secondly, in “new-bus” devices are organized
into a hierarchical tree. Each node in the tree
is represented by an object of type device t.
This allows “new-bus” to better handle dy-
namic devices.

Prior to “new-bus”, each bus supported by
FreeBSD was statically compiled into the the
kernel. In the configure function called dur-
ing boot, the kernel would call a function to
probe all the devices for a specific type of
bus. The PCI probe routine was responsi-
ble for walking the entire PCI device tree, for
example. It attached drivers to PCI devices
by scanning each PCI bus sequentially. After
the PCI probe had finished, the ISA probe
routine was called, etc.

In “new-bus”, any buses or bridges in the
system are treated as device objects in ad-
dition to tree leaves. For example, in “new-
bus” each PCI bus device is responsible for
scanning all of its child devices. Also, bridge
devices create appropriate child bus devices.
For many device related requests such as re-
source allocation, requests by a device are
passed up the device tree hierarchy. This pro-
vides a simple way for buses and bridges to
operate on requests from children device. For
example, routing PCI INTx interrupts for de-
vices behind one or more PCI-PCI bridges
can require routing interrupts across each
PCI-PCI bridge in different ways [3]. A top-
down approach such as in “old-config” would
require that the PCI support code know all
the possible methods for routing an INTx in-
terrupt as well as which method to use for a
given bridge. In “new-bus”, however, differ-
ent PCI-PCI bridge drivers implement differ-
ent routing methods and the bridge driver is
only responsible for routing interrupts across
itself. This allows a routing request to walk

up the tree using different routing methods
via different bridge drivers until it is satisfied.

2 Some Tricky Problems

One of the design goals of “new-bus” is that
all devices in the system are probed and at-
tached to drivers in a single pass of the device
tree during boot. Rather than having the de-
vice driver support code automatically probe
new devices as they are added, “new-bus” re-
quires bus drivers (i.e. any device that creates
children devices) to explicitly probe and at-
tach any devices it creates during its attach
routine. While this single-pass system has
worked relatively well so far, there are some
specific problems that it does not easily solve.

2.1 Low-level Hardware

Many hardware devices provide resources
used by other hardware devices. For example,
a bridge may provide ranges of address space
for devices on a bus, or interrupt controllers
may map device interrupt line assertions to
CPU interrupt events. A device driver de-
pends on these resources being available and
usable while it is managing a device. Cur-
rently, these low-level devices are not always
managed within the “new-bus” framework.

Some devices such as bridges are always
probed before the devices that depend on
them. Those devices are easily managed as
“new-bus” devices. Other devices are not al-
ways probed first, however.

On x86 machines the 8259A interrupt con-
trollers are generally enumerated as devices
on the ISA bus that is the child of a PCI-ISA
bridge. The PCI-ISA bridge is normally near
the logical “end” of its parent PCI bus. It is
very common for PCI devices that need in-
terrupt resources to probe and attach before
the ISA bus in these systems. The x86 plat-
forms work around this by setting up inter-
rupt controllers in platform-specific code that
does not use “new-bus” devices. This code
uses machine-dependent APIs to setup inter-



rupt handlers and access I/O resources. Later
during the “new-bus” device probe, dummy
device drivers attach to the 8259A interrupt
controller devices.

The ACPI bus driver uses a hack to probe
certain devices earlier than others. To pro-
vide this, the ACPI bus driver knows the PnP
IDs of specific “special” devices and inserts
those devices earlier in its list of children de-
vices to ensure they are probed before other
devices. However, this is hacky as special
knowledge about children devices belongs in
the device drivers for those devices, not in the
parent bus.

2.2 Resource Discovery and Man-
agement

One of the tasks of a device driver frame-
work is to distribute low-level resources
among devices. Some devices, such as non-
PnP ISA devices, have a fixed set of hard-
coded resources. For these devices, resource
management consists of reserving those re-
sources so that other devices do not try to
use them. Other devices are more complex.
They have fully configurable resources that
may be assigned by system software. An ex-
ample of this class of device is a PCI device.

Currently, FreeBSD relies on the system
firmware to initialize most of the resources
for PCI devices. This has improved in recent
years as FreeBSD can now route PCI inter-
rupts and it can assign resources to a device
if the parent bus has available resources of the
requested type. However, there are still some
cases that are not handled.

One specific case involves allocating re-
sources for devices behind a PCI-PCI bridge.
Currently, if a device requests a memory or
I/O port resource and there is not available
room in the parent bridge’s existing resource
windows, then FreeBSD does not try to grow
the resource window. There are some simple
cases that could be solved in the current sys-
tem. First, if the bridge has no window at all
then an arbitrary resource range can be allo-
cated from the parent. Second, if the bridge
is able to extend its existing window it could

use that extension to satisfy the original re-
quest. However, in many cases the request to
extend the window will fail because the adja-
cent resource range is already assigned to an-
other device. Moving resources for a device
with an active device driver would be error
prone. One way to handle this would be to
walk the PCI device tree before any devices
have started using resources to determine the
requirements of all the devices and bridges.
Appropriate ranges of resources could then
be assigned to each PCI bus behind a PCI-
PCI bridge possibly adjusting the ranges set
by the firmware if needed.

2.3 Boot vs Non-boot Device
Probing

Device drivers may attach to devices in
two different environments. The first envi-
ronment is the single pass of the device tree
during boot. The second environment is af-
ter the system has booted and is fully ini-
tialized. This latter environment is used by
drivers that are loaded via kldload(8) [5] after
boot.

The boot time environment has several
restrictions. Prior to FreeBSD 5.0, inter-
rupts were not enabled until later in the boot
process, so any drivers that needed to per-
form more complicated actions using inter-
rupts had to defer that work. Even though
interrupts are now enabled during this pass
in recent versions of FreeBSD, the thread
scheduler is not sufficiently initialized to al-
low threads to sleep while waiting for an in-
terrupt. In addition, only one CPU is active
and performing work during this time.

As a consequence of these restrictions, de-
vice drivers that need to perform tasks requir-
ing interrupts when attaching to hardware
must handle deferring this work. Although
the config intrconfighook(9) [4] API provides
this functionality in a way that works in both
environments, it still requires extra work in
the driver to use. Having a more unified en-
vironment could simplify device drivers.

One of the requirements of the thread
scheduler is the ability to provide time outs



on sleep requests. This requires some sort
of interrupt to fire when a time out request
expires. Some platforms provide this via an
interrupt from a timer device. For these plat-
forms, the thread scheduler cannot be started
until the timer device has been attached.

3 Multiple-Pass Proposal

To aid with solving these problems, I pro-
pose extending the “new-bus” framework to
perform multiple passes over the device tree
during boot. Device driver attachments
would now be assigned a “pass” value. A
driver is only invoked to probe devices once
the system-wide pass level is greater than
or equal to the attachment’s pass level. A
driver’s pass level is tied to a specific attach-
ment. If a driver attaches to multiple buses,
then it may have different pass levels for each
attachment. This allows for stronger ordering
of drivers with respect to each other across
the device tree. It also allows for the kernel
to perform work other than attaching drivers
with a partially-attached tree.

The current implementation defers probing
the majority of drivers until the final pass
during boot. These drivers require no code
changes. Drivers that wish to probe during
an earlier pass do require changes.

3.1 Changes to “new-bus” Infras-
tructure

The changes to “new-bus” itself to support
multiple passes are relatively minor. A few
places have to be adjusted to ignore drivers
whose pass level is greater than the current
system-wide pass level. A facility for raising
the pass level and triggering scans of the de-
vice tree for new pass levels is also required.

3.1.1 Special Handling of Driver
Methods

A few places where “new-bus” invokes de-
vice driver methods must skip drivers with

a pass level greater than the current sys-
tem pass level. Most device driver meth-
ods are only invoked once a driver has
probed and attached to a device. If de-
vice drivers are prevented from probing de-
vices too early, then those methods do not
need special handling. In fact, the only
methods which must be handled specially
are DEVICE IDENTIFY and DEVICE PROBE.
Specifically, bus generic probe only in-
vokes DEVICE IDENTIFY for driver attach-
ments whose pass level is less than or equal
to the current pass. Similarly, device probe
only tries driver attachments whose pass
level is less than or equal to the cur-
rent pass. This has the effect that device
drivers may always use bus generic probe
and bus generic attach to attach children
devices as they do now.

One bus method also requires special treat-
ment. The BUS PROBE NOMATCH method is
called for devices that are not probed by any
drivers during boot. Most devices will not
be probed by any drivers during early passes,
however. This would result in many spurious
calls of BUS PROBE NOMATCH. The solution is
to change device probe to only invoke this
method during the final pass.

3.1.2 Managing Pass Levels

Most of the changes to “new-bus” provide
management of pass levels. These changes
include tracking the passes used by drivers,
raising the pass level, and rescanning the de-
vice tree.

One of the goals of this implementation is
to support a dynamic set of sparse pass levels.
The interface should be similar to the subsys-
tem levels used with SYSINIT() [6]. Adding a
new driver with a new pass level to the system
should cause “new-bus” to rescan the tree for
that pass.

A simple implementation would be to res-
can the tree for every possible pass level dur-
ing boot from zero to INT MAX. However, it
is expected that there will normally be very
few active pass levels, so the vast majority of
these tree scans would be wasted effort. In-



stead, a new list of active pass levels is main-
tained. The list is sorted by pass level and
contains one driver per pass level. When a
new driver is registered with the system dur-
ing boot, that driver is added to the list if
it uses a previously-unused pass level. This
provides a quick and easy way to enumerate
the pass levels in use.

The current system pass level is stored in a
new global variable bus current pass. The
system pass level can be raised to a specific
value by calling the new bus set pass func-
tion. The requested pass level does not have
to be used by any drivers, but lowering the
pass level is not permitted.

The bus set pass function may invoke
multiple scans of the tree during a single call.
It walks the list of active pass levels until it
either hits the end of the list or encounters
a pass level higher than the requested level.
Any pass levels less than the current system
pass level are skipped. The remaining pass
levels each trigger a separate scan of the de-
vice tree.

Rescanning the device tree is implemented
by a new bus method BUS NEW PASS. The
bus set pass function invokes this method
on the root bus device each time the pass
level is raised. A default implementation is
provided by the new bus generic new pass
function. It first walks all the driver attach-
ments for the current device. If any of the at-
tachments use the new pass level, then their
DEVICE IDENTIFY method is invoked. After
this is completed, it walks the list of chil-
dren devices. If a child device has an at-
tached driver, then the driver’s BUS NEW PASS
method is invoked. Otherwise, the device is
reprobed. This allows drivers that were made
eligible for probing by the new pass to now
probe the device.

3.2 Writing an Early Pass Driver

In a system with multiple passes of the
device tree, the majority of existing drivers
will only probe devices during the final pass.
These drivers do not need any modifications.
Drivers that do wish to probe devices dur-

ing an earlier pass do require modifications,
however.

All early drivers are required to indicate
the earliest pass at which they are eligible to
probe devices. This is accomplished by a new
EARLY DRIVER MODULE macro. This macro is
similar to the existing DRIVER MODULE macro.
It simply adds a new argument to specify the
pass level of the driver attachment. For some
drivers this is the only modification needed.

Bus drivers may need additional changes
to their attach routines. Specifically, many
of the tasks bus drivers currently preform in
their attach routines may need to be deferred
until a specific pass has completed. For ex-
ample, PCI bus drivers should not attempt
to route interrupts for child devices until af-
ter the pass which adds interrupt controller
drivers is completed. Buses should also not
assign resources to devices until system re-
source drivers have attached and reserved re-
sources that other devices should not use.

One possible method for addressing this is
for bus drivers to provide a custom method
for BUS NEW PASS. This custom method would
perform actions dependant on an earlier pass
level the first time the pass level is raised to a
greater level. This would be a bit clunky and
require bus drivers to keep track of which ini-
tialization steps had already been performed,
however. It is also not very intuitive that one
cannot simply “hook” into an existing pass
level. Instead, the bus driver needs to be cer-
tain that an entire pass has completed before
it performs actions that depend on that pass.
This requires the actions to be deferred until
the next pass level instead.

Another approach would be to add spe-
cific event notification methods to the
bus interface. For example, a new
BUS ASSIGN RESOURCES method would be in-
voked at the top-level when the system was
ready for buses to assign resources to child
devices. One downside of this method is that
bus drivers would be required to explicitly
pass the notifications down to continue the
tree scans. This could be somewhat mitigated
by providing default implementations similar
to bus generic new pass.



If a bus driver can be attached after boot,
then any changes made to its attach routine
will need to take this into account. It can do
this by conditionally performing tasks such as
resource allocation in its attach routine based
on the current system pass level.

Finally, if a bus driver uses hints to enu-
merate children devices it may need to de-
fer adding hinted children. If all of the bus’s
child devices are enumerated by hints, then
no changes are needed. However, if the bus
supports a mixture of self-enumerated de-
vices and hint-enumerated devices and allows
self-enumerated devices to claim hint devices
via bus hint device unit, then special care
must be taken to not add hint-enumerated de-
vices until after all of the self-enumerated de-
vices have been probed during the final pass.
The only driver that currently has to deal
with this is the ISA bus driver on the amd64
and i386 platforms.

3.3 Pass Levels

The multiple pass system is designed to
easily allow new pass levels to be added. At
a minimum it requires two pass levels to be
present, the initial pass level used to attach
the root bus device and the default pass level
used by most drivers. However, for the sys-
tem to be useful additional pass levels must
be used. A list of possible pass levels in in-
creasing order follows. Each level is named
by a constant present in <sys/bus.h>.

The BUS PASS ROOT pass level is level 0 and
is reserved as a marker for the root bus de-
vice. The root bus driver does not probe and
attach normally, so it does not have an ac-
tual pass number assigned. Instead, “new-
bus” creates the device and assigns the driver
manually to provide a starting point for the
device tree. Pass level 0 is similarly special
in that it is the initial system pass level. No
drivers should use this pass level.

The BUS PASS BUS pass level is used by bus
and bridge drivers. These drivers are respon-
sible for populating the device tree. Note
that other early drivers need device nodes to
probe and attach to, so this is a prerequisite

for other early drivers.

The BUS PASS CPU pass level is used to cre-
ate devices for CPUs. Note that devices that
attach to CPUs such as cpufreq(4) drivers
may probe later. This is simply a continu-
ation of the previous level to fully enumerate
the device tree.

The BUS PASS RESOURCE pass level is used
by drivers that need to probe before resources
are assigned to devices. System resource
drivers would attach at this pass. Once this
pass is complete, bus drivers may assign non-
interrupt resources to devices.

The BUS PASS INTERRUPT pass level is used
by drivers that provide interrupt support ser-
vices. Interrupt controllers and PCI interrupt
routers would attach during this pass. Once
this pass is complete, bus drivers may assign
interrupt resources to devices.

The BUS PASS TIMER pass level is used by
drivers that implement any timers needed to
drive the thread scheduler. Clock drivers
would attach during this pass.

The BUS PASS SCHEDULER pass level is used
to indicate the point at which the thread
scheduler is started. Any other devices not
already probed that are required for the
thread scheduler would attach during this
pass. Once this pass is complete, the thread
scheduler could be started.

Finally, the BUS PASS DEFAULT pass level is
the final pass level. It has a value of INT MAX.
All devices not already probed by an earlier
pass would attach during this pass if a suit-
able driver is available.

4 Tricky Problems Revisited

On its own multiple passes of the device
tree does not solve any problems. However, it
does provide a framework that can be used to
solve the problems described earlier. A pos-
sible solution to each problem using multiple
passes is outlined below.



4.1 Low-level Hardware

Of the problems listed, drivers for low-level
hardware is probably the simplest to solve.
With the multiple pass framework, the soft-
ware to manage these devices can move from
platform-specific start-up code into platform-
specific early drivers. For example, inter-
rupt controllers on x86 platforms can probe
as “new-bus” devices that properly reserve all
their associated resources.

In the case of the ACPI bus driver, the
hack to order specific devices based on de-
vice IDs can be removed. Instead, the drivers
for the various “special” devices can become
early drivers. The pass levels of these drivers
can be used to guarantee ordering.

4.2 Resource Discovery and Man-
agement

In the previous discussion of resource dis-
covery and management, a solution for PCI
bus hierarchies was proposed. This solution
was to walk the device tree allocating re-
sources as necessary before attaching drivers.
One of the complications with this is that this
requires recursing into buses behind PCI-PCI
bridges and maintaining state for each bus,
etc. This can be accomplished more easily if
each PCI-PCI bridge and PCI bus are man-
aged by a device driver when this process is
performed. In that case, each driver is only
responsible for managing its own state.

A way to achieve this using early drivers is
to allow PCI bridge and bus drivers to probe
as BUS PASS BUS devices which enumerate all
child devices during the initial attach. How-
ever, resources would not be allocated to child
devices until a later point such as after the
BUS PASS RESOURCE pass has completed. PCI
bus drivers would provide methods to enu-
merate the range of resources required for
child devices. The implementation of this
method would include special handling for
PCI-PCI bridges that called down into the
child PCI bus to determine its resource re-
quirements and use that to program the de-
coding windows on the parent side of the PCI-

PCI bridge.

4.3 Boot vs Non-boot Device
Probing

One of the largest differences between boot
and non-boot device probing is the lack of
thread scheduling during boot. One of the
things the thread scheduler requires to run
are working timers to support sleep time-
outs. Changing the drivers for timer de-
vices to be early devices that probe as
BUS PASS TIMER would allow these devices to
probe before most other drivers. After the
BUS PASS SCHEDULER pass, the thread sched-
uler could be started. All drivers probed af-
ter that would then probe in an environment
similar to the post-boot environment.

5 Conclusion

Multiple passes of the device tree provides
a framework that can be used to solve sev-
eral problems. The current design does not
require any modification to the majority of
device drivers and seeks to minimize the re-
quirements of early device drivers. In fact,
most of the changes to early drivers result
from the need to solve other problems such
as improved resource management.
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7 Availability

Currently the multiple pass
support code is present in the



//depot/projects/multipass/... branch
in the FreeBSD Perforce depot. Due to
the nature of kobj, this framework could
be merged back to stable branches with
a small ABI compatibility stub for the
driver module handler function.

This document is available at http://www.
FreeBSD.org/~jhb/papers/bsdcan_09.
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