
How not to write
network applications

(and how not to use them correctly..)

Adrian Chadd <adrian@FreeBSD.org>

mailto:adrian@FreeBSD.org
mailto:adrian@FreeBSD.org

Overview

• A simple overview - including HTTP basics

• A few “bad” examples, notably from Squid/
Apache - and what they’ve subsequently
done

• An “ok” example - notably lighttpd

• “good” examples - memcached, varnish

• What is libevent ?

Overview (ctd)

• Latency, bandwidth delay product, and
scheduling network IO

• Why does disk IO matter?

• Summary

Introduction

• Writing network applications is easy

• Writing efficient network applications is less
easy

• Writing efficient, scalable network
applications is even less easy

• Predicting your real-life workloads and
handling that is difficult

Lessons learnt, #1

• High-performance network applications
needs clue

• Coding clue

• Algorithm choices, structure

• Hardware clue

• How fast can you push what

• Gathering/Interpreting profiling

Lessons learnt, #1
• Operating system clue

• Best way to schedule stuff

• Worst ways to schedule stuff

• Profiling!

• Networking clue

• “speed of light”

• TCP/UDP behaviour

Lessons learnt, #1

• Protocol clue

• How does the protocol work

• Client <-> Server communication

• Client behaviour, Server behaviour

• How this ties into the network

An example: HTTP
• HTTP is .. strange

• A large variance in usage patterns, client/
servers, traffic patterns, software versions,
network behaviour..

• Small objects

• < 64k

• will never see TCP window size hit
maximum during initial connection
lifetime

An example: HTTP

• Large objects

• Well, >64k really

• Will start to hit congestion and back-off
limits

• Throughput variations are perceived by
end-user

• versus small objects - request/reply
rate dictates perceived speed

An example: HTTP

• But there’s more!

• HTTP keepalives affect TCP congestion

• HTTP pipelining influences perceived
request speed on small objects

• Clients and servers have differently
tuned TCP stacks...

• .. “download accelerators”, anyone?

Apache: History!
• The pre-fork web server

• internals should’ve been clean because of
this

• Handled high-reqrate poorly

• Handled high numbers of concurrent
connections poorly

• Flexible enough to run a variety of
processing modules - php, python, perl, java..

Apache: History!
• Why did it perform so poorly under load?

• Memory use - each connection == 1
process; SSL/PHP/Python/etc overheads

• .. even if the request didn’t require any
of that

• scheduling 30,000 concurrent processes
== hard (Jeff: is it that bad nowdays?)

• small amount of paging == death

Apache 2: Revolution

• Decided to abstract out the dispatching
runtime - thread pool, pre-fork

• To handle varying platform support, incl.
Windows, Netware

• Abstracted out the socket polling where
relevant - select, poll, kqueue, epoll, etc

• User can select which dispatcher (MPM)
they wish to use at compile/install time

Apache 2: MPM

• Quite a few MPM modules for scheduling
work

• Traditional prefork

• Process + thread worker module

• Thread-only worker modules (Netware)

• Something windows-specific

Apache 2: Performance
• Pre-fork: same as apache 1

• Worker thread models:

• network IO only? It should be fast
enough for you

• Disk IO too? Things get scary: the
worker thread pool begins to grow!

• thread seems to scale (as a proxy) to
>10000 concurrent connections

Apache 2: Modern Use
• Split up different services - static, dynamic,

application

• Configure a front apache (running thread
MPM) as a proxy; “route” content to
applicable backend

• Static content? Don’t waste memory on
PHP.

• PHP/etc content? Don’t stall static content
serving

Squid: History
• Squid: its been around a while

• Its not as bad as people make it out to be

• Its getting better as I find free time

• Compared to modern proxies, its slower..

• .. but it handles a wide cross-section of
traffic loads (except “lots of traffic”..)

• .. lots of traffic defined at ~ 1000 req/sec
and about 200mbit of mixed traffic

Squid: internals
• Single process/thread event loop for

everything but disk IO

• Non-blocking network IO

• Has grown kqueue/epoll/etc support

• Uses threads/processes to parallelise
blocking disk IO

• Attempts to mitigate overload conditions
where humanly possible (ie: where I find
them)

Squid: whats wrong?
• Far too much code ..

• ~ 25 functions account for 40% of CPU

• ~ 500 functions account for the other
60% of CPU (userland)

• IO done in small amounts

• Disk IO - 4k

• Network IO - 16k

• This isn’t as bad as you think.. read on

Squid: whats wrong?
CPU: Core 2, speed 2194.48 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask
of 0x00 (Unhalted core cycles) count 100000
samples % image name symbol name
216049 6.5469 libc-2.7.so memcpy
115581 3.5024 libc-2.7.so _int_malloc
103345 3.1316 libc-2.7.so vfprintf
85197 2.5817 squid memPoolAlloc
64652 1.9591 libc-2.7.so memchr
60720 1.8400 libc-2.7.so strlen

Squid: whats wrong?
• Codebase has grown organically

• Squid-cluey programmers were hired by
Akamai, etc - suddenly no-one was working
on performance

• Ten + years of features added on top of
poor structural base, and HTTP/1.1 still
hasn’t appeared..

• .. but the poor structure is now looking
better

Squid: network IO?
(ACCELERATOR)

HTTP I/O
number of reads: 19463301

Read Histogram:
 1- 1: 5194 0%
 2- 2: 4675 0%
 3- 4: 1588 0%
 5- 8: 10412 0%
 9- 16: 351771 2%
 17- 32: 89452 0%
 33- 64: 63398 0%
 65- 128: 81808 0%
 129- 256: 337836 2%
 257- 512: 412245 2%
 513- 1024: 928914 5%

 1025- 2048: 14296942 73%
 2049- 4096: 1731657 9%
 4097- 8192: 808069 4%
 8193-16384: 205358 1%
16385-32768: 60013 0%

(PROXY)
HTTP I/O

number of reads: 3087754
Read Histogram:

 1- 1: 11327 0%
 2- 2: 208 0%
 3- 4: 1211 0%
 5- 8: 617 0%
 9- 16: 1421 0%
 17- 32: 3400 0%
 33- 64: 6079 0%
 65- 128: 14680 0%
 129- 256: 20808 1%
 257- 512: 57378 2%

 513- 1024: 2931775 95%
 1025- 2048: 25183 1%
 2049- 4096: 3767 0%
 4097- 8192: 4061 0%
 8193-16384: 5839 0%
16385-32768: 0 0%

Squid: Network IO?
• Talking over a LAN != Talking over a WAN

• Larger socket buffers == faster throughput

• But only up until bandwidth delay!

• Larger socket buffers also == wasted RAM

• Choose socket buffer size based on required
throughput and concurrency, based on
client delay.

• .. which can vary, so its tricky ..

Theoretical: <= 4k bufs

Theoretical: <= 32k bufs

Socket buffers (again)

• So socket buffer sizes are a tradeoff

• eg: 10,000 4k socket buffers: 40
megabytes

• eg 10,000 32k socket buffers: 320
megabytes

• Double that (at least) if the application
buffers in-flight data until the kernel says
its sent!

Squid: Disk IO
• Don’t use one-file-per-object for small,

frequently accessed files

• If you do, at least pretend to dump
related objects in the same directory

• open/close metadata overheads are high

• If you’re unlucky, >2 seeks to open a file
that isn’t in VM/buffer cache

• .. and then the IO is done in 4k chunks

Squid: 4k disk IO?

• Transfer rate at 32k (18gig 10krpm SCSI)
Runtime: 41.32 seconds, Op rate: 247.84 ops/sec, Avg
transfer rate: 8121367.38 bytes/sec

• Transfer rate at 4k (18gig 10krpm SCSI)
Runtime: 32.27 seconds, Op rate: 317.28 ops/sec, Avg
transfer rate: 1299566.81 bytes/sec

• ops/sec drop by 22%; transfer rate up by 6x

• need to squeeze small objects into larger
blocks on disk and increase IO size

Squid: logging
• It did use stdio calls for logging

• .. which may block on buffer flush

• anecdotally, topping out the logging
performance at ~ 300 req/sec

• Current logging code: log to memory buffer;
send buffer over pipe() to helper process

• Later plans will turn this into a thread

• Limited by Squid: can log ~ 4000 req/sec to
disk with no service impact

Squid: reply sizes
• Like the object histogram, actual reply sizes

(and the time length to serve them) varies
greatly

• Forward proxy: mix of small and large

• Accelerator: may be a mix; may be just
small, may be just large, may be both

• If you’re clever, you can handle all of these
cases efficiently enough

• .. or you can assume everyone is local..

Squid: reply sizes

• Sample 1: Forward proxy

• < 8k - 314871
< 64k - 2448235
< 256k - 333
<1M - 6761
< 32M - 20874
> 32M - 3132

• Most requests are < 64k; with a secondary small peak
between 1M / 32M

Squid: reply sizes

• Sample 2: (last.fm; used with permission)

• < 8k - 3249802
< 64k - 5618618
< 256k -1357
< 1M - 33407
< 32M - 88592
> 32M - 11511

• Again, most are <64k; ~ 100k (~1.2%) are >32M

• What are the implications of these?

Squid: reply sizes
• Those large replies will be streaming replies,

either from disk or from another server

• Much more data transmitted!

• Long-held connections, potentially filled TX
socket buffer

• Transmitting these should not interfere with
small object replies

• .. and for the most part, Squid handles that
dichotomy fine

Squid: load shedding
• At some point you’ll receive more requests

then you can handle

• You need to gracefully(ish) handle this so the
service doesn’t spiral into death

• Squid does this in a number of places

• Too many connections? Stop accept()’ing

• Too much disk IO? Stop disk HITs; fail to
MISSes

Squid: accept() rates
• Balance accepting new connections and

handling existing connections

• More difficult with poll()! (Ie, how often to
run poll() over the incoming vs all sockets)

• In the past - full accept queue -> ignore new
requests

• Currently (AFAICT) - full accept queue ->
RST new requests

• Impacts service; impacts SLB logic

Squid: Disk IO
• Overloaded disk IO queue?

• First: Turn object creates into create
fails; limit hits to memory only

• Then: Turn object reads into fails; limit
hits to memory only - generally turn
into temporary MISS -> backend fetch

• Problem: increased backend load

• .. and this can also cause your
service to spiral down into death

Lighttpd: New Stuff
• The Ruby crowd loves this thing for some

reason

• Isn’t a HTTP server so much as a “HTTP
content router”

• Save a few things (eg static, flv); all
complicated stuff is done via fastcgi back-
ends

• Attempted to handle sendfile() where
appropriate

lighttpd: internals
• Again - select/kqueue/poll/epoll style event

loop with callbacks

• Monolithic process - SMP implemented as
simply running >1 process

• Which works very well for what lighttpd
does

• Attempts to schedule “IO operations”
internally which map to a variety of options

• read, readv or sendfile, for example

lighttpd: whats right
• The majority of complicated behaviour is

implemented through fast-cgi modules

• Ie, lighttpd doesn’t run PHP, etc in its
own process

• This frees up lighttpd to be a HTTP content
router to “other” things locally and/or over
the network

• It just happens that it also serves static
content quite well

lighttpd: whats wrong
• “Chunk” interface - A list of “chunks” to

write to the client

• A “chunk” could be memory, disk,
another network socket

• “disk” chunks would be read/sendfile
()’ed as needed..

• .. and the whole process stopped if
the read needed to block.

• Apparently fixed in later versions!

lighttpd: anecdotally
• Feedback from various teams inside a large

content provider

• Lighttpd doing straight static replies:

• ~ 1k: ~10,000 req/sec per CPU

• ~ 2k: ~8000 req/sec per CPU

• ~ 4k: ~5000 req/sec per CPU

• > 8k: about the same speed as Squid

• 4k, 5000 req/sec => 200mbit / sec

Varnish

• (Hi PHK!)

• Initially I had a lot to talk about, but my data
has fallen through from third parties

Varnish

• A good example of how far you can push
hardware and software

• A bit workload-specific : handles small
objects well; much larger objects not so well

• Anecdotal evidence about handling lots of
slow clients poorly (this is what I wanted
data about!)

Varnish: internals

• (Insert PHK’s slides from last year here)

• Pool of worker threads

• Network/VM IO done sync, not async

• Parallelism through worker threads

• Good pthread locking, efficient parsing,
efficient data exchange, doesn’t abuse
memory allocator, VCL is shiny

Varnish: internals

• Instead of complicated hard-coded rules (a
la Squid and most other things), forwarding
and caching logic is implemented in VCL

• Which is translated into C and inserted into
varnish at runtime

• Reliant on scatter-gather IO (good!) and VM
system (not so good, see below)

Varnish: in production
• Works great for some

• Hot workload fits in RAM; small objects?
Fantastic

• Anecdotally, doesn’t work great for others

• Slow backend w/ popular objects? Not
so good. (Squid -> “collapsed
forwarding”)

• Slow clients/servers -> not so good

Varnish: VM?

• Varnish uses the VM system quite extensively

• The VM system is great at the average, but
needs to be “taught” about HTTP access
patterns to optimise disk throughput

• Eg: pack small objects into contiguous pages

• Eg: do IO in larger parts to save on disk ops

Varnish: the “good”

• Scales well across multiple CPUs

• Handles its workload very well

• (Ie, puts other proxies to shame)

• Does stuff “differently” (in a good way)

• Eg - logging, statistics reporting

• VCL - don’t hard-code your application
logic!

Memcached

• Or, as I like to call it, “mysqlcached”

• A memory object cache for storing and
retrieving “stuff”

• “stuff” is generally SQL queries, but can be
whatever the heck you want

Memcached: Internals
• Started as a Squid-like single process async

event loop

• First time I saw it: it used libevent

• A couple years ago? - threaded

• N threads, one per CPU

• One thread handles incoming
connections

• All threads: handle actual work

Memcached: scaling

• It scales quite well..

• .. but it isn’t a complicated program!

• Memcached scaling is generally limited by
OS parallelism - FDs, socket, TCP, UDP, IP

• Doesn’t need to schedule disk IO; all
operations are memory based

Memcache: issues
• Similar to Squid/Varnish: small objects pack

badly

• Apparently(!) Memcache tries to pack
objects using 32 bit pointers in 64 bit
environment

• Squid - 160 byte StoreEntry, 70 odd byte
MD5; 30 odd byte MemObject; 4k object
granularity

• Memory wastage on small objects

Libevent?

• Libevent is a simple(!) library for scheduling
network IO events across UNIX platforms

• Implements poll, select, kqueue, epoll, /dev/
poll, solaris event ports

• (and Windows; but thats a different story)

• Basic threading support - run multiple event
queues, one per thread

How is libevent used?
• Create queue - event_base * event_init();

• Run the queue - event_base_loop
(event_base *);

• Setup events - event_set(event *, fd, what,
callback, data)

• Throw event into a queue - event_base_set
()

• Schedule event - event_add(event *, timeval
*)

Does libevent scale?

• Scales well across multiple CPUs - each
libevent queue runs seperately

• Event registration isn’t O(1) - uses trees for
registering timer/immediate events in
priority/order

• A “derivative” libevent tries to avoid this
overhead

Trouble with Libevent
• Standard UNIX problem - inter-thread

communication

• Thread sleeps on poll/select/kqueue/etc;
how does another thread wake it?

• “portable” method - create pipe; write byte
to “wake” up destination thread to check
message queue

• Each UNIX has a different way of solving
this!

How low can you go?
• A simple libevent-based TCP proxy

• accept() connection, connect() to
another; shuffle data

• CPU parallelism by using one thread per
CPU

• Core 2 Duo desktop: E2200

• Variable socket sizes; variable concurrency

• How far can things be pushed?

TCP Proxy: One thread

• One userland thread

• One kernel thread for network device IO

• Can split that into device/netisr threads

• Throughput: ~4kbyte objects; ~400mbit/sec;
12000 req/sec - 24,000 sockets/sec

• One CPU maxed userland; other CPU
mostly maxed doing device/netisr

TCP Proxy: two threads

• Two userland threads

• Same setup

• Only incremental improvement - 500mbit;
slightly more requests/sec

• Both CPUs at 100%

• Why?

TCP Proxy: contention

• One particular area of contention:

• TCP PCB processing

• Robert/Kris will be working on this

• Userland CPU breakdown:

• <5% userland CPU both CPUs; so the
userland is fine

• Is it “doing” things efficiently?

TCP Proxy: buffer size
• What happens if you up the socket buf size?

• (And what happens if you up the transaction
size?)

• Transaction size: higher throughput;
approaching 800mbit FDX

• Socket buffer size: no appreciable
difference on LAN

• Need to model WAN traffic a little
better!

Bandwidth Delay

• .. this isn’t just a problem on the WAN

• LAN’s have similar issues with gige/10ge
pipesize

• In summary - you end up having to pipeline

• .. why would you need to pipeline on a
LAN ?

• (eg - NFS)

NFS and Delay
• Say, 4k transactions over the wire

• How can you get gigabit speed with 4k
transactions?

• 100 megabytes/sec / 4kbyte/sec => ~25k
packets a second

• Each transaction: 0.00004 sec (0.04 msec)

• If your transaction for 4k block > 0.04msec,
you won’t saturate gigabit ethernet

NFS, Delay, real-world
• Comptuational cluster serving data over

NFS

• Legacy fortran code, ~ 1kbyte data chunking

• Bad throughput!

• CPU wasn’t maxed

• Disks weren’t maxed

• Network wasn’t maxed

• ... ?

NFS, Delay, Real world

• Problem is due to NFS transaction latency!

Disk IO .. ?

• Lots of applications do disk IO to push out
to the network

• Think about latency on disk IO + latency on
network IO -> effective transfer rates

• UNIX network IO - traditionally sync

• POSIX AIO makes this less painful

• Faked using Threads/Processes

Scheduling Disk IO

• How its done in Squid:

• aio_read(fd, buf, size, callback, cbdata)

• ... buffer is returned

• .. event_add(socket write event,
timeout)

• .. socket is ready

• write(sockfd, buf, size)

Scheduling disk IO

• The problems!

• Standard UNIX read/write involves a
kernel copyin/copyout, which takes quite a
bit of time

• POSIX AIO in FreeBSD should make this
much less painful - shouldn’t copy disk
data

• Prefetching or no-prefetching?

Disk IO: prefetching?
• How much data can you pre-fetch?

• Balance between reading slightly more
data from disk, and how much RAM in
your box (and buffer cache)

• mmap() ?

• Again, potentially blocking!

• You have to manually lock pages or they
may even be removed underneath you..

Disk IO: sendfile
• Sendfile is a “pretty word”

• In essence - glue together a disk fd and a
socket fd; ask kernel to do the heavy lifting
for you without copying

• You avoid two trips user->kernel for the disk
read, then the socket write

• Traditionally: blocking only; so you need
threads to run the sendfile context()

• (ie, one reason varnish is what it is..)

Summary
• Writing efficient, scalable network

applications is hard

• Understand what you’re trying to do

• Understand how you can do it

• Understand your protocol, hardware,
software

• And above all - assume users will do dirty
things with it that you don’t expect!

Questions?

Thankyou!
Adrian Chadd <adrian@FreeBSD.org>

mailto:adrian@FreeBSD.org
mailto:adrian@FreeBSD.org

