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What is DTrace?
● DTrace is a Dynamic Tracing Framework.

– It includes:
● A (su) program.
● A user-land API.
● Kernel modules.
● A kernel module 'provider' API.
● Hooks throughout the kernel.

● Requires no access to the source code.
– No such thing as building a debug version.

● Operates on the fly.
– Probes are inserted without interruption.



  

What is DTrace? (cont)

● No process can shield itself.
– Example of what Apple tried to do.
– Stripping binaries hides the variable types, 

but relocatable symbols are still there.
– It's hard for a vendor to supply a blackbox 

that you can't trace.



  

History

● DTrace was developed for Solaris.
● OpenSolaris makes code available to 

other operating systems like FreeBSD.
● Code is not BSD licensed, so integration is 

tricky.
– Read the CDDL before shipping binaries.

● You can still keep your development 
private. #include changes rather than 
editing the CDDL sources!



  

What DTrace isn't!

● DTrace isn't a debugger.
● DTrace doesn't contain artificial 

intelligence.
– It's just a neat way to instrument running 

code.

● DTrace doesn't do anything automatically 
or by default.
– You have to tell it what to do by programming 

it.



  

DTrace Resources

● Solaris Dynamic Tracing Guide
– HTML: http://docs.sun.com/app/docs/doc/817-6223

– WIKI: http://wikis.sun.com/display/DTrace/Documentation

– PDF: http://dlc.sun.com/pdf/817-6223/817-6223.pdf

● BigAmin portal
– http://www.sun.com/bigadmin/content/dtrace/

● Discussion forum
– http://www.opensolaris.org/jive/forum.jspa?forumID=7

http://docs.sun.com/app/docs/doc/817-6223
http://wikis.sun.com/display/DTrace/Documentation
http://dlc.sun.com/pdf/817-6223/817-6223.pdf
http://www.sun.com/bigadmin/content/dtrace/
http://www.opensolaris.org/jive/forum.jspa?forumID=7
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DTrace Terminology

● Probe
– Is a named object which, when enabled and 

triggered, causes dtrace(9) to execute code 
dynamically added to that probe.

– There is only one backend probe function that 
is used for allall probes:

● void dtrace_probe(dtrace_id_t id, uintptr_t arg0, 
uintptr_t arg1, uintptr_t arg2, uintptr_t arg3, 
uintptr_t arg4);

● This is the epicenter of DTrace.



  

DTrace Terminology (cont)

● Provider
– Makes (or provides) probes to dtrace(9) via 

the DTrace provider API.
– Determines how probes are named.
– Enables and disables probes on demand.
– Without providers, dtrace(9) can never 

inspect anything.
– A kernel module can register multiple 

providers.
● e.g. The Statically Defined Trace (SDT) module 

registers many provider names.



  

Probe Naming
● DTrace probe IDs have 4 components:

– Provider name.
– Module name.
– Function name.
– Probe name.

● The fully specified ID is:
– provider:module:probefunc:probename

● Fields left empty are interpreted as 
wildcards.

● The naming convention isn't rigid.



  

Listing & Enabling Probes

● Listing from the command line:
– # dtrace -l

– Examples...

● Enable a probe with the default action:
– # dtrace -n 'syscall:::entry'

– Will enable all syscalls on entry.
– Examples...

● Enable a probe with a custom action:
– # dtrace -n 'syscall:::entry { trace(execname); }'

– Will print the executable file name.



  

DTrace Scripting

● The D programming language.
● Use the .d file name suffux by convention.
● Executing a DTrace script from the 

command line:
– # dtrace -s filename.d

– Examples...



  

D Programming Language

● How most people interact with DTrace.
● Consists of one or more clauses 

probe-descriptions

/ predicates /

{

action statements
}



  

D: Probe Descriptions

● One or more probes, comma separated.
● e.g. syscall:::entry, syscall:::return
● May include filecards:

– syscall::*stat:entry
– Matches 14 probes (depends on providers 

loaded, though).
– syscall::*stat:entry, syscall::*stat:return
– Matches 28 probes.



  

D: Predicates

● Optional.
– If not specified, the actions are always 

executed when one of the probes fires.

● Enclosed by / and /.
● Works like 'if ()' in C.
● Example:

– syscall:::entry
– / execname == “Xorg”/
– Filters all syscalls to just those made by the X 

server.



  

DIF

● DTrace Intermediate Format.
● D scripts are compiled at run time to DIF.
● DIF is interpreted by dtrace(9).
● It has a RISC instruction set which 

handles references to DIF variables. 
'execname' in the previous example is a 
DIF variable.

● Predicates are compiled to a DIF 
expression.



  

DIF Variables

● execname, execargs
● curthread, curproc
● probeprov, probemod, probefunc, 

probename
● pid, ppid
● .... more
● Example: adding 'execargs' as a new DIF 

variable.



  

Actions & Subroutines

● Actions typically store the data or modify 
state external to DTrace.

● Subroutines modify the internal DTrace 
state.

● If a clause is left empty, the default action 
is taken.
– Trace the enabled probe identifier (EPID).



  

Data Recording Actions

● trace()
● tracemem()
● printf()
● printa()
● printm(), printt()

– Added for FreeBSD



  

Printing Complex Types
with printt()

● Syntax should be:
– printt(curthread, 1);
– A pointer to a typed value and the number of 

elements of that type.

● Example

tick-1s
{

printt(512, typeref(curthread, 1, “type”, 0));
exit(0);

}



  

Destructive Actions

● stop()
● raise()
● copyout()
● copyoutstr()
● system()
● breakpoint()
● chill()
● panic()



  

Subroutines

● alloca()
● basename()
● bcopy()
● cleanpath()
● copyin()
● copyinstr()
● copyinto()
● dirname()

● progenyof()
● rand()
● speculation()
● strjoin()
● strlen()



  

Data Types

● Two sources of data types:
– C code (from compiled objects via CTF)
– D code (from DTrace script)

● CTF is a subset of the DWARF debugging 
info.



  

Variables
● Three classes of variables:

– Global
– Thread specific
– Clause specific

● Can access kernel and module variables.
– The backtick (`) operator makes them 

external references.

● Non-external variables are allocated 
dynamically when a non-zero value is 
assigned; and deallocated when zero is 
assigned.



  

Global Variables

● Example

tick-1s
{

cnt++;
trace(kernel`time_uptime);
trace(cnt);

}



  

Thread Specific Variables

● Example

syscall::read:entry

{

self->ts = timestamp;

}

syscall::read:return

{

trace(timestamp - self->ts);

self->ts = 0;

}



  

Aggregations

● Aggregating functions allow multiple data 
points to be combined and reported.

● Used when the 
● Aggregations take the form:

– @name[ keys ] = aggregating-function( arguments );



  

Aggregation Functions

● avg()
● count()
● lquantize()
● max()
● min()
● quantize()
● sum()



  

Aggregation – Count
● Example

syscall:::entry
{

@fred[probefunc] = count();
}

tick-5s
{

printa(@fred);
clear(@fred);

}



  



  

DTrace for FreeBSD

How it works
 in FreeBSD
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DTrace device

● All DTrace clients call the user-land 
DTrace API (libdtrace).

● libdtrace talks to dtrace(9) exclusively via 
device ioctls.

● Device special file /dev/dtrace is cloned 
on open to /dev/dtrace/dtraceX.

● Each DTrace client has it's own 
/dev/dtrace/dtraceX.

● The DTrace 'state' is allocated per cloned 
device.



  

DTrace ioctls
● DTRACEIOC_PROVIDER

● DTRACEIOC_PROBES

● DTRACEIOC_BUFSNAP

● DTRACEIOC_PROBEMATCH

● DTRACEIOC_ENABLE

● DTRACEIOC_AGGSNAP

● DTRACEIOC_EPROBE

● DTRACEIOC_PROBEARG

● DTRACEIOC_CONF

● DTRACEIOC_STATUS

● DTRACEIOC_GO

● DTRACEIOC_STOP

● DTRACEIOC_AGGDESC

● DTRACEIOC_FORMAT

● DTRACEIOC_DOFGET

● DTRACEIOC_REPLICATE



  

DTrace ioctls (cont)

● To log ioctl calls use:
– sysctl debug.dtrace.verbose_ioctl=1

● An example will show how the syscalls 
are used....



  

Provider API

● Providers register a set of callback 
functions for the DTrace options.

● See:
– src/sys/cddl/contrib/opensolaris/uts/common/sys/dtrace
.h

● Well documented (by Sun)!



  

Provider Ops
● dtps_provide()

– Provide all probes, all modules

● dtps_provide_module()
– Provide all probes in specified module

● dtps_enable()
– Enable specified probe

● dtps_disable()
– Disable specified probe

● dtps_getargdesc()
– Get the argument description for args[X]



  

Provider Ops (cont)
● dtps_suspend()

– Suspend specified probe

● dtps_resume()
– Resume specified probe

● dtps_getargval()
– Get the value for an argX or args[X] variable

● dtps_usermode()
– Find out if the probe was fired in user mode

●  dtps_destroy()
– Destroy all state associated with this probe



  

Writing a Provider

● You can start from scratch and choose 
your own license.

● Use a template:
– src/sys/cddl/dev/prototype.c

● Change 'prototype' to your module name.
● A kernel module can register more than 

one provider with the same or different 
ops
– e.g. The Statically Defined Tracing (sdt) 

module.



  

Statically Defined Tracing

● Different implementation to Sun's.
● Macros to define probes are in:

– sys/sys/sdt.h

● Macros behave like the kernel malloc 
ones.

● Define or declare (extern) a provider:
– SDT_PROVIDER_DEFINE(prov)
– SDT_PROVIDER_DECLARE(prov)

●



  

Statically Defined Tracing
(cont)

● Define or declare (extern) a probe:
– SDT_PROBE_DEFINE(prov, mod, func, name)
– SDT_PROBE_DECLARE(prov, mod, func, 

name)
– Provider declaration must be in scope.

● Define the probe arguments:
– SDT_PROBE_ARGTYPE(prov, mod, func, name, 

num, type)
– One per argument.



  

Statically Defined Tracing
(cont)

● Insert a probe:
– SDT_PROBE(prov, mod, func, name, arg0, 

arg1, arg2, arg3, arg4)
– Add this as many times as you wish.
– Allows probes of the same name to occur at 

different places in the code.
– Convenient when trying to handle obsoleted 

functions, for instance.



  

When to write a new
provider?

● Always try to minimize the runtime 
impact of tracing.

● The Function Boundary Trace (fbt) 
provider will often give you probes, but 
may require too many predicate checks.

● If you have objects, add probe hooks and 
a provider.
– For example, dtmalloc, a provider for 

malloc_type objects.



  

Probe Arg Types

● One of the coolest features of DTrace.
● You can write a provider without 

specifying arg types
– But D scripting requires more casting.
– Casting makes it easier to make mistakes and 

draw the wrong conclusions.



  

dtrace_probe()

● The epicenter of DTrace.
● Often called via a shim to:

– Isolate the CDDL code.
– Allow the DTrace modules to be optional.

● You don't have to load all the DTrace modules.
● Module dependencies cause required modules to 

load.

● Does no memory allocation
● Does not lock anything



  

dtrace_probe() (cont)

● Blocks interrupts while it runs
– D syntax is deliberately restrictive to:

● Make dtrace_probe() fast so that it has as little 
impact on the running code as possible.

● Discourage you from trying to use it to write 
complex applications.

● Processes enabling controlled blocks 
(ECBs)
– The enabling comes from the predicate DIF 

expression.
– Enables actions which themselves may have 

DIF expressions.



  

Summary

ioctl front end driven by
user-space libdtrace

dtrace_probe() Provider API
driven by

the providers

● The 3 faces of the dtrace kernel module:
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