

DTrace for FreeBSD

May 2008

John Birrell
jb@freebsd.org

BSDcan

What is DTrace?
● DTrace is a Dynamic Tracing Framework.

– It includes:
● A (su) program.
● A user-land API.
● Kernel modules.
● A kernel module 'provider' API.
● Hooks throughout the kernel.

● Requires no access to the source code.
– No such thing as building a debug version.

● Operates on the fly.
– Probes are inserted without interruption.

What is DTrace? (cont)

● No process can shield itself.
– Example of what Apple tried to do.
– Stripping binaries hides the variable types,

but relocatable symbols are still there.
– It's hard for a vendor to supply a blackbox

that you can't trace.

History

● DTrace was developed for Solaris.
● OpenSolaris makes code available to

other operating systems like FreeBSD.
● Code is not BSD licensed, so integration is

tricky.
– Read the CDDL before shipping binaries.

● You can still keep your development
private. #include changes rather than
editing the CDDL sources!

What DTrace isn't!

● DTrace isn't a debugger.
● DTrace doesn't contain artificial

intelligence.
– It's just a neat way to instrument running

code.

● DTrace doesn't do anything automatically
or by default.
– You have to tell it what to do by programming

it.

DTrace Resources

● Solaris Dynamic Tracing Guide
– HTML: http://docs.sun.com/app/docs/doc/817-6223

– WIKI: http://wikis.sun.com/display/DTrace/Documentation

– PDF: http://dlc.sun.com/pdf/817-6223/817-6223.pdf

● BigAmin portal
– http://www.sun.com/bigadmin/content/dtrace/

● Discussion forum
– http://www.opensolaris.org/jive/forum.jspa?forumID=7

http://docs.sun.com/app/docs/doc/817-6223
http://wikis.sun.com/display/DTrace/Documentation
http://dlc.sun.com/pdf/817-6223/817-6223.pdf
http://www.sun.com/bigadmin/content/dtrace/
http://www.opensolaris.org/jive/forum.jspa?forumID=7

DTrace Framework

user-space

kernel-space

libc

libdtrace

dtrace(8)

dtrace(9)

DTrace
Providers

dtrace(9)

dtrace

syscall
profile

fbt
dtmalloc

DTrace
Clients

DTrace Terminology

● Probe
– Is a named object which, when enabled and

triggered, causes dtrace(9) to execute code
dynamically added to that probe.

– There is only one backend probe function that
is used for allall probes:

● void dtrace_probe(dtrace_id_t id, uintptr_t arg0,
uintptr_t arg1, uintptr_t arg2, uintptr_t arg3,
uintptr_t arg4);

● This is the epicenter of DTrace.

DTrace Terminology (cont)

● Provider
– Makes (or provides) probes to dtrace(9) via

the DTrace provider API.
– Determines how probes are named.
– Enables and disables probes on demand.
– Without providers, dtrace(9) can never

inspect anything.
– A kernel module can register multiple

providers.
● e.g. The Statically Defined Trace (SDT) module

registers many provider names.

Probe Naming
● DTrace probe IDs have 4 components:

– Provider name.
– Module name.
– Function name.
– Probe name.

● The fully specified ID is:
– provider:module:probefunc:probename

● Fields left empty are interpreted as
wildcards.

● The naming convention isn't rigid.

Listing & Enabling Probes

● Listing from the command line:
– # dtrace -l

– Examples...

● Enable a probe with the default action:
– # dtrace -n 'syscall:::entry'

– Will enable all syscalls on entry.
– Examples...

● Enable a probe with a custom action:
– # dtrace -n 'syscall:::entry { trace(execname); }'

– Will print the executable file name.

DTrace Scripting

● The D programming language.
● Use the .d file name suffux by convention.
● Executing a DTrace script from the

command line:
– # dtrace -s filename.d

– Examples...

D Programming Language

● How most people interact with DTrace.
● Consists of one or more clauses

probe-descriptions

/ predicates /

{

action statements
}

D: Probe Descriptions

● One or more probes, comma separated.
● e.g. syscall:::entry, syscall:::return
● May include filecards:

– syscall::*stat:entry
– Matches 14 probes (depends on providers

loaded, though).
– syscall::*stat:entry, syscall::*stat:return
– Matches 28 probes.

D: Predicates

● Optional.
– If not specified, the actions are always

executed when one of the probes fires.

● Enclosed by / and /.
● Works like 'if ()' in C.
● Example:

– syscall:::entry
– / execname == “Xorg”/
– Filters all syscalls to just those made by the X

server.

DIF

● DTrace Intermediate Format.
● D scripts are compiled at run time to DIF.
● DIF is interpreted by dtrace(9).
● It has a RISC instruction set which

handles references to DIF variables.
'execname' in the previous example is a
DIF variable.

● Predicates are compiled to a DIF
expression.

DIF Variables

● execname, execargs
● curthread, curproc
● probeprov, probemod, probefunc,

probename
● pid, ppid
● more
● Example: adding 'execargs' as a new DIF

variable.

Actions & Subroutines

● Actions typically store the data or modify
state external to DTrace.

● Subroutines modify the internal DTrace
state.

● If a clause is left empty, the default action
is taken.
– Trace the enabled probe identifier (EPID).

Data Recording Actions

● trace()
● tracemem()
● printf()
● printa()
● printm(), printt()

– Added for FreeBSD

Printing Complex Types
with printt()

● Syntax should be:
– printt(curthread, 1);
– A pointer to a typed value and the number of

elements of that type.

● Example

tick-1s
{

printt(512, typeref(curthread, 1, “type”, 0));
exit(0);

}

Destructive Actions

● stop()
● raise()
● copyout()
● copyoutstr()
● system()
● breakpoint()
● chill()
● panic()

Subroutines

● alloca()
● basename()
● bcopy()
● cleanpath()
● copyin()
● copyinstr()
● copyinto()
● dirname()

● progenyof()
● rand()
● speculation()
● strjoin()
● strlen()

Data Types

● Two sources of data types:
– C code (from compiled objects via CTF)
– D code (from DTrace script)

● CTF is a subset of the DWARF debugging
info.

Variables
● Three classes of variables:

– Global
– Thread specific
– Clause specific

● Can access kernel and module variables.
– The backtick (`) operator makes them

external references.

● Non-external variables are allocated
dynamically when a non-zero value is
assigned; and deallocated when zero is
assigned.

Global Variables

● Example

tick-1s
{

cnt++;
trace(kernel`time_uptime);
trace(cnt);

}

Thread Specific Variables

● Example

syscall::read:entry

{

self->ts = timestamp;

}

syscall::read:return

{

trace(timestamp - self->ts);

self->ts = 0;

}

Aggregations

● Aggregating functions allow multiple data
points to be combined and reported.

● Used when the
● Aggregations take the form:

– @name[keys] = aggregating-function(arguments);

Aggregation Functions

● avg()
● count()
● lquantize()
● max()
● min()
● quantize()
● sum()

Aggregation – Count
● Example

syscall:::entry
{

@fred[probefunc] = count();
}

tick-5s
{

printa(@fred);
clear(@fred);

}

DTrace for FreeBSD

How it works
 in FreeBSD

DTrace Framework

user-space

kernel-space

libc

libdtrace

dtrace(8)

dtrace(9)

DTrace
Providers

dtrace(9)

dtrace

syscall
profile

fbt
dtmalloc

DTrace
Clients

/dev/dtrace

DTrace device

● All DTrace clients call the user-land
DTrace API (libdtrace).

● libdtrace talks to dtrace(9) exclusively via
device ioctls.

● Device special file /dev/dtrace is cloned
on open to /dev/dtrace/dtraceX.

● Each DTrace client has it's own
/dev/dtrace/dtraceX.

● The DTrace 'state' is allocated per cloned
device.

DTrace ioctls
● DTRACEIOC_PROVIDER

● DTRACEIOC_PROBES

● DTRACEIOC_BUFSNAP

● DTRACEIOC_PROBEMATCH

● DTRACEIOC_ENABLE

● DTRACEIOC_AGGSNAP

● DTRACEIOC_EPROBE

● DTRACEIOC_PROBEARG

● DTRACEIOC_CONF

● DTRACEIOC_STATUS

● DTRACEIOC_GO

● DTRACEIOC_STOP

● DTRACEIOC_AGGDESC

● DTRACEIOC_FORMAT

● DTRACEIOC_DOFGET

● DTRACEIOC_REPLICATE

DTrace ioctls (cont)

● To log ioctl calls use:
– sysctl debug.dtrace.verbose_ioctl=1

● An example will show how the syscalls
are used....

Provider API

● Providers register a set of callback
functions for the DTrace options.

● See:
– src/sys/cddl/contrib/opensolaris/uts/common/sys/dtrace
.h

● Well documented (by Sun)!

Provider Ops
● dtps_provide()

– Provide all probes, all modules

● dtps_provide_module()
– Provide all probes in specified module

● dtps_enable()
– Enable specified probe

● dtps_disable()
– Disable specified probe

● dtps_getargdesc()
– Get the argument description for args[X]

Provider Ops (cont)
● dtps_suspend()

– Suspend specified probe

● dtps_resume()
– Resume specified probe

● dtps_getargval()
– Get the value for an argX or args[X] variable

● dtps_usermode()
– Find out if the probe was fired in user mode

● dtps_destroy()
– Destroy all state associated with this probe

Writing a Provider

● You can start from scratch and choose
your own license.

● Use a template:
– src/sys/cddl/dev/prototype.c

● Change 'prototype' to your module name.
● A kernel module can register more than

one provider with the same or different
ops
– e.g. The Statically Defined Tracing (sdt)

module.

Statically Defined Tracing

● Different implementation to Sun's.
● Macros to define probes are in:

– sys/sys/sdt.h

● Macros behave like the kernel malloc
ones.

● Define or declare (extern) a provider:
– SDT_PROVIDER_DEFINE(prov)
– SDT_PROVIDER_DECLARE(prov)

●

Statically Defined Tracing
(cont)

● Define or declare (extern) a probe:
– SDT_PROBE_DEFINE(prov, mod, func, name)
– SDT_PROBE_DECLARE(prov, mod, func,

name)
– Provider declaration must be in scope.

● Define the probe arguments:
– SDT_PROBE_ARGTYPE(prov, mod, func, name,

num, type)
– One per argument.

Statically Defined Tracing
(cont)

● Insert a probe:
– SDT_PROBE(prov, mod, func, name, arg0,

arg1, arg2, arg3, arg4)
– Add this as many times as you wish.
– Allows probes of the same name to occur at

different places in the code.
– Convenient when trying to handle obsoleted

functions, for instance.

When to write a new
provider?

● Always try to minimize the runtime
impact of tracing.

● The Function Boundary Trace (fbt)
provider will often give you probes, but
may require too many predicate checks.

● If you have objects, add probe hooks and
a provider.
– For example, dtmalloc, a provider for

malloc_type objects.

Probe Arg Types

● One of the coolest features of DTrace.
● You can write a provider without

specifying arg types
– But D scripting requires more casting.
– Casting makes it easier to make mistakes and

draw the wrong conclusions.

dtrace_probe()

● The epicenter of DTrace.
● Often called via a shim to:

– Isolate the CDDL code.
– Allow the DTrace modules to be optional.

● You don't have to load all the DTrace modules.
● Module dependencies cause required modules to

load.

● Does no memory allocation
● Does not lock anything

dtrace_probe() (cont)

● Blocks interrupts while it runs
– D syntax is deliberately restrictive to:

● Make dtrace_probe() fast so that it has as little
impact on the running code as possible.

● Discourage you from trying to use it to write
complex applications.

● Processes enabling controlled blocks
(ECBs)
– The enabling comes from the predicate DIF

expression.
– Enables actions which themselves may have

DIF expressions.

Summary

ioctl front end driven by
user-space libdtrace

dtrace_probe() Provider API
driven by

the providers

● The 3 faces of the dtrace kernel module:

	Splash
	Title
	What is DTrace
	What is DTrace cont
	History
	What DTrace isn't
	Resources
	Framework diagram
	Terminology
	Terminology cont
	Probe naming
	Listing and enabling probes
	Scripting
	D language
	Probe descriptions in D
	Predicates
	DTrace Intermediate Format
	DIF variables
	Actions and subroutines
	Data recording actions
	Printing complex types
	Destructive actions
	Subroutines
	Data types
	Variables
	Global variables
	Thread specific variables
	Aggregations
	Aggregating functions
	Aggregation example
	End of part 1
	---> How it works in FreeBSD
	Framework structure
	DTrace device
	DTrace ioctls
	DTrace ioctls cont
	Provider API
	Provider Ops
	Provider Ops cont
	Writing a provider
	Statically defined tracing
	Statically defined tracing cont
	Statically defined tracing cont 2
	When to write a new provider
	Probe arg types
	dtrace_probe
	dtrace_probe cont
	3 faces summary
	End splash

