ZFS
the internals

Pawel Jakub Dawidek
<pjd@FreeBSD.org>

_‘BS DCan
Ottawa, 2008

mailto:pjd@FreeBSD.org

Layers

ZFS Layers

SPA - Storage Pool Allocator

» responsible for managing pools

configuration
zpool create/destroy/add/remove/attach/detachy...

 keeps pools' history

zpool history
* logs persistent pool-wide data errors

zpool status -v

VDEV - Virtual Devices

» provides a unified method of arranging and
accessing devices
e vdevs form a tree:

* one root vdev
 multiple interior vdevs (mirror, RAID-7)
 multiple leaf vdevs (disks, files)

* VDEV is responsible for handling 1/0
requests and laying out the blocks

VDEV - Virtual Devices

zpool create -f tank da0 mirror da1 da2 raidz1 da3 da4 da5 raidz2 da6 da7 da8 da9
zpool status tank

root
aidzl.

/10 - ZFS 1/0 Pipeline

o all I/O requests goes through this pipeline

 compression, checksumming (and soon
encryption) happens here

* I/O requests have priorities

ARC - Adjustable Replacement Cache

 implemented based on FASTO3 paper by
Megiddo and Modha

 dynamically, adaptively and continually
balances between recency and frequency
components in an online and self-tuning
fashion

e is scan-resistant (allows one-time sequential
requests to pass through without polluting
the cache)

DMU - Data Management Unit

 implements transactional object model on
top of the flat address space presented by
the SPA

» consumers interact with DMU via objsets,
objects and transactions

* object represents an arbitrary piece of
storage from the SPA

* objset is a collection of objects

e fransaction is a series of operations that

~ are guaranteed to be committed to the
~ disk(s) together

==

DSL - Dataset and Snapshot Layer

 aggregates DMU objsets into a hierarchical
namespace with inherited properties

e enforces quota and reservations

e responsible for managing snapshots and
clones

al
T
]

/1L - ZFS Intent Log

» makes fsync(2) and O_FSYNC work as
expected

vl
—
.

/AP - ZFS Attribute Processor

 implemented atop of DMU

* uses scalable hash algorithms to create
arbitrary (name, object) associations within
an objset

» mostly used by ZPL to implement {file
system directories, but not only

* two types of ZAP:
e micro ZAP (small entries, number of entires relatively small)
¢ fat /AP (big entires, huge number of entires)

Traversal

» provides safe way of traversing all data
within a live pool
e used for scrub/resilver

vl
i
-

ZVOL - ZFS Emulated Volumes

» allows to access storage pool data through
GEOM providers
* /dev/zvol/<dataset>

vl
i
=
4

/PL - ZFS POSIX Layer

e presents file system abstraction of files and
directories to VFS

 implements all the VOPs and VFSOPs

o allows to access ZFS managed storage via
file system operations

/dev/zfs

e communication gate between userland tools
(zIs(8) and zpool(8)) and the kernel

vl
i
-

‘Features

|..'/
o~
b A

RAIDS, RAIDG

» Redundant Arrays of Inexpensive Disks?

o writting to multiple disks is not atomic!

e the write hole problem - synchronize all
disks just in case when an outage occurs
or use expensive RAID controllers

* doing partial-stripe writes is slow
(read-modity-write cycle)

RAID-Z, RAID-Z2

e similar to RAID5/RAIDG6 and yet so much
different

o only full-stripe writes

* self-healing

e integrated with file system:
e atomic writes (file system handles that)
. 1ntelhgent reconstruction:

« most important data first

« synchronize only changes (when disk was missing for a moment
only)

» validate against checksum

RAID-Z layout

P(0,3,6,8) D6 D8
P(1,4,7,9) D1 D4 D7 D9
P(2,5) D2

D5 P(0) DO

P(1) D1

End-to-end data integrity 1/4

A regular file system: ,Here is a package. It
may be broken, it may not be yours, we don't
care.”

vl
—
-

End-to-end data integrity 24

Checksumming in hardware: , Here is a
package. We are not sure if it is yours, but
we know it wasn't broken when we pick it

up.

End-to-end data integrity s34

File system with block consistency
verification: ,,Here is a package. We are sure
it is not broken, but not so sure if this is
actually your package.”

End-to-end data integrity 4/4

* block is verified against independent
checksum

» for redundant configurations ZFS looks for
correct block, returns that to the application
and repairs corrupted copy

* ZFS blocks form Merkle tree - each block
validates all its children, so the checksum in
uberblock provides
cryptographically-strong (in case of

- SHA-256) signature of the entire pool

==

Snapshots

e no limit for number of snapshots

» taking a snapshot is constant-time operation

* snapshots don't slow down other file system
operations

* removing a snapshot is takes time
proportional to the number of blocks to free

e file system snapshots location:

/<dataset_mount_point>/.zf's/snapshot/<snapshot_name>

« ZVOL snapshots location:

/dev/zvol/<dataset_name>@<snapshot_name>

Snapshots

* {0 maintain snapshots ZFS:

* keeps block birthtime with the block pointer
 maintains list of dead blocks (blocks that were removed from the
file system, but are still visible in one of the snapshots)

« when snapshot is destroyed we can free
blocks that meet the following conditions:

1) they were born after the previous snapshot
2) they were born before this snapshot

3) they died after this snapshot

4) they died before the next snapshot

Destroying a snapshot 13

time

‘ 1 -

block A

‘ _block B

| | I fs (C)
snapQ snapl (D) snap? (A, B)

‘ time -

block A

I I fs (C)

snap(snap2 (A, D)

Destroying a snapshot 23

time

‘ -
block A
I I fs (C)
snap(snap2 (A, D)
‘ time -
block A
I fs (A, C, D)

snap0

Destroying a snapshot 33

time

-

block A

|
a0 fs (A, C, D)

time

-

fs

Resilvering

 ZFS traverse metadata when synchronizing
disks, which gives us the following
benefits:

» data integrity verification is done before the copy
« copy only the live blocks

« copy only the difference (in case of transient outage)

Status

/ZFS/FreeBSD Status

e fresh and even more cool ZFS version
waiting in perforce to be committed

» code-wise complete, but still needs testing

e some new features:

o delegated administration
* [2ARC
* dedicated log vdevs
« corrupted files list
« stability improvements (no more kmem_map too small panics?)
« ZFSboot
* 7pool properties
o failure modes (wait, continue, panic)
« when ZFS will be ready for production use?

Questions?

