
ADAM David Alan Martin,

and Erez Zadok

Stony Brook University

http://www.fsl.cs.sunysb.edu/

AutoFS on FreeBSD 6.x

An Automounting File System
Implementation for FreeBSD

6/18/07 File Systems and Storage Lab 2

About Me
• ADAM David Alan Martin

• Former Physics student
• Majoring in Computer Science, and Applied

Mathematics and Statistics
• Long-time UNIX user

• Programming
• Strong knowledge of C and many assembly

languages
• Interest in File Systems, boot loaders, device

drivers, and lower-level programming

• FreeBSD
• Recently (around 2003) started using FreeBSD
• Even more recent (around 2006) FreeBSD Kernel

programming

6/18/07 File Systems and Storage Lab 3

Background

• Status Quo
• Berkely Automounter
• /usr/ports/sysutils/am-utils
• Maintained by Erez Zadok
• Uses SUN RPC based NFS simulation to

behave like a filesystem.
• NFS is slow. Bouncing off of userspace and RPC is

even slower!

• Alfred Perlstein made an AutoFS
• Legal issues caused this to be abandoned
• Erez Zadok got involved and AutoFS became a

GSoC for 2006.

6/18/07 File Systems and Storage Lab 4

Basics of Automounting

1. User makes a request to a file (which is
unavailable)

2. An interception layer interprets this request,
and causes the user process to block

A. The automounter is instructed to mount a file
system

B. The automounter mounts the file system

C. The automounter notifies the interception layer
of successful mount

3. The interception layer unblocks the process
and it goes on its way.

6/18/07 File Systems and Storage Lab 5

AM-UTILS Automounting

• Uses NFS emulation to simulate a file system
for mount point services
• RPC services for NFS are slow and baroque
• NFS emulation opens possible security risks
• NFS emulation causes a massive number of

context switches for each RPC call
• User->Kernel and Kernel->User transitions for each RPC

“packet”

• AMD cannot mount directly to the provided file
system: “Magic” symlinks provide redirection evil.
• A “hole” exists where accesses to the file systems can

occur outside of the Automounter framework.

• AMD’s NFS emulation makes it incredibly portable,
however.

6/18/07 File Systems and Storage Lab 6

AM-UTILS Replacements
• Sun AutoFS for Solaris

• Implemented in-kernel, communicates with the AMD
automounter (or others)
• Serialized mounting behavior

• Linux AutoFS
• Implemented in kernel, communicates with a Linux specific

automounter
• This automounter is very buggy, and crash prone
• This automounter can hang the entire kernel, if it crashes

• KDE’s HAL mechanisms
• Not a true file system, but provides automount like facilities

via the GUI backends.
• Very user intuitive and friendly

• Provides a Win32 like experience with respect to removable
data storage.

6/18/07 File Systems and Storage Lab 7

Shortcomings of these
Replacements

• Most kernel automount layers lack many
useful features and capabilities
• The automount daemon is not restartable

• Crashing or stalling the automount daemon can cause
parts of the system to wedge

• The automount system can only handle one mount
request at a time, in a serialized fashion

• KDE’s HAL is not a proper file system
interface: It requires the of parts of KDE
• It does not interact well with shell scripts, and

other tools.
• The HAL is not useful for complex network file

system automounter setups.

6/18/07 File Systems and Storage Lab 8

AutoFS for FreeBSD

• Google Summer of Code Project 2006
• Benno Rice mentored

• Erez Zadok advised

• Alfred Perlstein has been very encouraging

• AutoFS for FreeBSD implements a
protocol design for automounter file
systems which solves many of the
problems in previous automounter file
systems.

6/18/07 File Systems and Storage Lab 9

New AutoFS Features

• Restartable protocol
• Filesystem mount states are cached by the

AutoFS kernel code, to be reported to user
processes, when needed for restart.

• Crashing AMD does not have to wedge the
system anymore.

• Asynchronous mount request handling
• Mounts can be done in parallel, and reported as

completed in any order (regardless of the order of
requests.)

• Processes do not have to wait for slow mounts,
just because they “asked” for a resource too late.
(You’re not stuck in traffic behind the slow car.)

6/18/07 File Systems and Storage Lab 10

More Features

• Lightweight protocol
• The protocol thus far only defines some 8 major

commands
• This makes it easy to implement for clients

• The protocol command space is largely undefined
leaving plenty of room for expansion

• Automounter session tracking lets the AutoFS
permit direct mounting of filesystems.
• No more magic symlink forest

• No more backdoor to the mount path

6/18/07 File Systems and Storage Lab 11

Basic Protocol Commands (AutoFS)

• Commands AutoFS can send to AMD
• Request Mount

• Request Unmount (variant of mount request)

• Other requests can be pooled here?

• Greeting
• Sends mount state to client daemon on connection

• Mount modification response
• Inform Automounter of the new state of mount settings,

after a change request

• Acknowledge
• Sent to complete protocol transactions

6/18/07 File Systems and Storage Lab 12

Basic Protocol Commands (AMD)

• Commands AMD can send to AutoFS
• Mount Done

• Also reports unmount done
• Can be extended to handle reporting for other requests

• Hello
• Initializes an AutoFS session

• Greeting Response
• Passes to AutoFS any extra mount management

information AMD would like to send

• Modify Mounts
• AMD can request that AutoFS change its mount

management information at any time this way

• Acknowledge
• Used to note the end of an AMD initiated transaction

6/18/07 File Systems and Storage Lab 13

Putting It Together

• AutoFS Components
• File system interface
• Protocol channel interface
• Protocol handler
• Timer expiry mechanism
• Shared data amongst all these components

• AutoFS’s kernel module implements many
things
• Device Driver
• File system
• Kernel thread
• Protocol endpoint

6/18/07 File Systems and Storage Lab 14

Overall Design

Kernel

User

6/18/07 File Systems and Storage Lab 15

What is this “TemplateFS” I see?

• FreeBSD provides a very rich VFS
mechanism for implementing all kinds of file
systems.
• Unfortunately this layer is not very friendly for

“virtual” or “synthetic” file systems with no backing
store
• procfs

• linprocfs

• linsysfs

• Many others are also in this category

• Fortunately, procfs, and linprocfs share a common
code library: pseudofs.

6/18/07 File Systems and Storage Lab 16

Pseudofs

• Written by DES
• Found in src/sys/fs/pseudofs
• Provides an interface for making a static

synthetic file system
• Provides hooks for handling many vnop calls on

any “file” and some vfsop calls as well.
• Procfs and linprocfs use this to implement things like

/proc/1/cmdline functionality.
• Linsysfs uses it for similar configuration reporting.

• Pseudofs does all the dirty work of managing
memory and interfacing with the VFS
• Client code works with simple pseudofs structures

and can create or delete files in the tree with ease.

6/18/07 File Systems and Storage Lab 17

What Pseudofs Needed

• Pseudofs lacked the ability to trap the
vfs_lookup chain of events
• A file system paradigm which mounts on lookup

needs this

• Pseudofs lacked the ability to create non-
static client file systems
• A single global AutoFS mount is insufficient for the

goals of a proper automounter system

• Because pseudofs was not able to have
multiple instances of a client file system,
associating file system state to a pseudofs is
difficult.

6/18/07 File Systems and Storage Lab 18

Enter TemplateFS

• TemplateFS is a code fork of pseudofs
created originally for convenience
• Repatching src/sys/fs/pseudofs with my changes

after cvs updates to the main source tree was
troublesome
• The changes would break procfs and linprocfs making

buildworld and buildkernel difficult

• AutoFS required this hacked pseudofs to function

• Setting pseudofs to compile as a module would
help, but as I kept changing the hacks to pseudofs,
I had to rebuild this module, in a privileged
directory

6/18/07 File Systems and Storage Lab 19

Future of TemplateFS

• TemplateFS’s capabilities diverge
enough from pseudofs to warrant a fork,
unless procfs and linprocfs are altered
to suit these changes.

• Someone more familiar with the procfs
and pseudofs code might want to take
over the TemplateFS work.

• AutoFS only requires TemplateFS’s
added feature set -- it is strictly
separated from TemplateFS.

6/18/07 File Systems and Storage Lab 20

AutoFS Protocol Transactions

• All transactions are tagged with a
“Transaction ID” to facilitate
asynchronous responses
• “TID”s can be as simple as time stamps

• Nearly all transactions begin with the
AutoFS
• TID spoofing or collisons aren’t serious issues.

• Userspace TIDs are allocated a separate
portion of the TID space (High bit set)

• Transactions can be “interlaced”

6/18/07 File Systems and Storage Lab 21

Sample Initial Transaction
• AMD says “Hello” to AutoFS

• AMD requests to communicate a protocol version

• AutoFS responds with “Greeting”
• Tells AMD what version of the protocol it uses

• Version N+1 is a strict superset of N.
• Both parties use the lower protocol version requested.

• Tells AMD what the current AutoFS state is
• Mounted file systems
• Managed paths

• AMD responds with “Greeting Response”
• Tells AutoFS what file system changes it would like to

make

• AutoFS responds with “Modify Mounts
Acknowledge”
• Tells AMD what file system changes were made

6/18/07 File Systems and Storage Lab 22

Sample Mount Transaction

• User accesses a resource in an
unmounted file system
• “wine /mnt/floppy/virus.exe” for example

• AutoFS receives the vfs_lookup()
request for “floppy/virus.exe”
• Because “virus.exe” lives in “floppy/”

AutoFS signals AMD to mount “/mnt/floppy”

• AutoFS blocks the “wine” process, but lets
all AMD’s children through.

6/18/07 File Systems and Storage Lab 23

Sample Mount Transaction (cont.)

• AMD runs “mount /dev/fd0 /mnt/floppy”, with
AMD’s session ID, to pass through the block.
• AMD Notifies AutoFS when the mount is done

(Mount completed command.)

• AutoFS unblocks processes on “/mnt/floppy”
• AutoFS also unblocks all stopped processes on

“/mnt/floppy” (Including “wine”)
• AutoFS also adds an expiry for “/mnt/floppy”

• AutoFS sends an “Acknowledge” to AMD,
ending the transaction
• When the expiry occurs, AutoFS sends an

unmount request.
• Unmount occurs in roughly the same set of steps.

6/18/07 File Systems and Storage Lab 24

Mount/Unmount Failures

• Mount
• All currently blocked processes are unblocked
• They eventually hit an ENOENT condition
• AutoFS keeps the file system marked unmounted

• Facilitates future mount attempts

• Unmount
• Usually unmount failures are EBUSY conditions
• AutoFS will just acknowledge
• AutoFS keeps the file system mounted

• This keeps things functioning correctly

• AutoFS also resets the expiry timer
• Facilitates future unmount attempts

6/18/07 File Systems and Storage Lab 25

Other Components

• TemplateFS
• In perforce alongside the AutoFS code

• Mount_autofs
• In perforce alongside the AutoFS code

• Afsconfig
• In perforce alongside the AutoFS code
• Used to configure the AutoFS system

• Create multiple AutoFS sessions:
• /mnt
• /net
• /homes
• /servers

• These sessions maintain their own state.

6/18/07 File Systems and Storage Lab 26

AMD Changes to Make

• Adding a protocol handler for FreeBSD
AutoFS

• Making AutoFS talk to /dev/autofs%d
instead of over RPCs

• These changes will help other OSes if
my AutoFS is ported or rewritten for
them.

• Changes to AM-Utils need to get to
FreeBSD somehow

6/18/07 File Systems and Storage Lab 27

AMD Modifications

• AM-Utils is in ports -- Modifying the
main tree will propogate these changes
to FreeBSD
• AM-Utils is maintained by my advisor, Erez

Zadok

• AM-Utils could be brought into
src/contrib
• A simpler automounter could be written for

stock FreeBSD

• AM-Utils is very complex, but very powerful

6/18/07 File Systems and Storage Lab 28

Closing Thoughts

• AutoFS for FreeBSD can help it to get a
competitive edge among other FOSS
operating systems.

• AutoFS protocol is very simple, making
future changes and re-implementations
simple
• The protocol helps to solve many of the

issues with earlier automounter systems

• AutoFS is in perforce -- It should be in
future FreeBSDs

6/18/07 File Systems and Storage Lab 29

Special Thanks

• Erez Zadok - FSL Advisor and Lead
Researcher

• Benno Rice - GSoC Mentor
• Alfred Perlstein - Original FreeBSD AutoFS

work, and encouragement
• Robert Watson - Advice and assistance in the

early stages and encouragement
• Murray Stokely - For introducing me to

everyone important at NYCBSDCon
• The entire FreeBSD community - For making

me feel welcome, and anyone’s assistance
that I may have overlooked

6/18/07 File Systems and Storage Lab 30

Questions

• Thank you for your interest in AutoFS.

