
Embedding FreeBSD/powerpc

Notes on the journey to the embedded world

Rafał Jaworowski
raj@semihalf.com

BSDCan 2007, Ottawa

mailto:raj@semihalf.com

Embedding FreeBSD/powerpc BSDCan 2007

Introduction – overview
● FreeBSD/powerpc on the embedded PowerPC platform

– Freescale Semiconductor's MPC85xx PowerQUICC III
integrated communications processor

– http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8555E
● Focus on the bring-up level development

– The most critical areas required for the system to run in
single and multi-user

– Booting, low-level init

– Virtual memory, MMU
● Other functional areas also mentioned but not thoroughly

discussed

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8555E

Embedding FreeBSD/powerpc BSDCan 2007

Introduction – overview
● Why PowerPC (POWER)

– Widespread, deployed in countless embedded and desktop
devices

– Architecture actively maintained and supported (cross
industry POWER specifications – power.org)

● AMCC, Freescale, IBM, P.A. Semi
– Clean design, RISC architecture

Embedding FreeBSD/powerpc BSDCan 2007

FreeBSD/powerpc before

● Limited to Apple's PowerMac platform (newworld
machines), now going obsolete

● Still Tier 2
● Most important architectural limitations:

– No SMP

– No 64-bit support

– Only works with underlying OpenFirmware

– Only supports the traditional PowerPC
(Apple/IBM/Motorola) definition

Hardware platform

● Freescale Configurable Development System
● Arcadia motherboard
● Modular, SoC on the daughter card, different variants can

be used in one frame
● MPC85xx communications processor (PowerQUICC III)

– Core CPU
– SDRAM controller
– I2C
– DUART
– Interrupt controller
– Ethernet (TSEC)
– PCI
– DMA engine
– Security engine
– CPM (dedicated RISC comm processor)

Embedding FreeBSD/powerpc BSDCan 2007

e500 core

● Low-power embedded RISC processor
● Implements the Book E definition of the PowerPC architecture
● 32-bit (using lower words in the 64-bit general-purpose

registers)
● Compatible with the user-instruction set architecture (UISA)

of the traditional PowerPC definition (AIM)
● Auxiliary processing units (APUs) - signal processing, vector

instructions
● 32-bit effective addresses and integer data types of 8, 16, and

32 bits
● Superscalar, can issue and complete two instructions per clock

cycle
● L1 caches for instructions and data (32-Kbyte for each)
● Memory management units

Embedding FreeBSD/powerpc BSDCan 2007

Critical e500 features

● MMU different from the traditional PowerPC model (AIM)
– no BATs and segments: TLB-only
– no real-mode i.e. valid TLB entries always needed

● L1 MMUs
– maintained entirely by the hardware (LRU algorithm)

● L2 MMUs
– 16-entry, fully-associative unified (instruction and data) TLB,

variable-sized pages
– unified TLB for 4-Kbyte page size

● 256-entry, 2-way set-associative (e500v1)
● 512-entry, 4-way set-associative (e500v2)

– maintained by the software

Embedding FreeBSD/powerpc BSDCan 2007

Critical e500 features cont'd

● Exceptions/interrupts model
– Machine check, Critical, “Standard”

● Registers
– UISA-level compatible with traditional AIM
– e500-specific instructions and registers (rfmci, rfci, MCSRRs, CSRRs

etc.)
● No traditional PowerPC FPU (floating point instructions

trigger an FP exception)
– use SoftFloat emulation library with libc
– handle kernel traps

Embedding FreeBSD/powerpc BSDCan 2007

Environment

● FreeBSD 6.1-p10 source tree
● Toolchain

– Cross-building

– gcc 3.4.6 from base

– e500-specific asm switches
● Layout of arch/powerpc

– aim/booke split

– platform subdirectory

– re-design directory layout to accomodate this and other
core variants in the future

Embedding FreeBSD/powerpc BSDCan 2007

Booting

● Underlying firmware: U-Boot
– extensions to the firmware: networking, new API

● loader(8) - 2nd stage bootloader
– running as an application on top of U-Boot
– U-Boot support library can be re-used on other FreeBSD ports like

ARM, MIPS
– effective addressing issues at the loader-kernel boundary (ELF

processing, producing metadata)
● Locore kernel

– does not assume any hardware setup on the firmware other than very
basic initialization of the memory controller and clocking

– allows to boot the kernel from other bootloaders as it's not tied to any
particular one (provided they construct and pass the metadata)

– de-OF-ing: current FreeBSD/powerpc port is strongly entangled with
OpenFirmware

Firmware/bootloader memory view

U-Boot code/data

RAM start

RAM end

loader(8)

FreeBSD kernel image

metadata

● Linked against 0xC000_0000
● Loaded at 0x0100_0000

● __start()
– Discover its whereabouts
– Re-init MMU settings
– Firmware/bootloader no longer

available
● booke_init()
● mi_startup()

Entry point

Embedding FreeBSD/powerpc BSDCan 2007

Low-level VM design and implementation

– Basic characteristics
● 32-bit effective address

– 32-bit real address (e500v1), 4G space
– 36-bit real address (e500v2), 64G space

● Big- and true little-endian per page
● No real-mode, translations always required
● At reset core begins execution at fixed virtual address, MMU

has a default translation
– New pmap module developed

● FreeBSD pmap(9) interface – inherited from Mach VM design
● Two-level forward page table approach
● Not the traditional PowerPC inverted page table

Embedding FreeBSD/powerpc BSDCan 2007

Forward page table

Page table directory PTE
PTE

PTE
PTE

Page tables

Real pages

Embedding FreeBSD/powerpc BSDCan 2007

L2 unified MMU resources

. . . .

TLB0
4K pages

. . . .

TLB1
variable sized pages

Set-associative
256/512 entries

Used for dynamic
translations

Fully associative
16 entries

Used for permanent
 translations of kernel

critical mappings

Translation primitives summary

. . . .

Effective addresses

Real addressesTLB

“Long term” translations – page table
– State maintained by pmap + higher VM
– Covers the whole address space of a process

Dynamic translations – TLB
– Lowest level mem management
– Updated by the TLB-miss

handler
– Unrelated entries
– Translations cache

Embedding FreeBSD/powerpc BSDCan 2007

TLB in action

AS (1-bit) PID (8-bit)

Virtual address (41-bit)

Effective address (32-bit)

L1 MMUs L2 MMU

Real address (32/36-bit)

– Operations on the L2 MMU
via assist registers (MAS)

– Shared pages PID = 0

Simplified virtual memory view

Kernel

Process

0xC000_0000

0x0000_0000

0xFFFF_FFFF

Kernel text, msgbuf,
kstack0 etc.

Kernel page table
structures

CCSR

KVA

Permanent translations
covered by TLB1

More challenging low-level VM aspects

– Nested TLB-misses
● Where they come from
● How to manage

– Very carefully – a mishandled nested TLB-miss is endless [hang]
– TLB-miss handler is very tiny, hand-crafted, with only a small and

well defined cases that can generate a nested miss, can accomodate
recursion

– TLB-miss handling overview
● Search for the faulting address in the page table (pdir ->

ptable)
● If VA -> PA translation found, put in the TLB, job done
● If not found, create a fake translation: this will promptly cause

a corresponding ISI/DSI exception on faulting address (and let
higher VM manage this)

Embedding FreeBSD/powerpc BSDCan 2007

Nested TLB-miss

KVA

Process 1

2

3

P

K

D/I miss

D miss

D miss

Exceptions, interrupts

● Vectors are not required to be at prefixed location (contrary to
the AIM design)

– Critical Input
– Machine Check
– Data Storage (DSI)
– Instruction Storage (ISI)
– External input

● OpenPIC interrupt controller
– Alignment
– Program
– System Call
– Decrementer
– Fixed Interval Timer
– Data TLB Error
– Instruction TLB Error
– Debug

Embedding FreeBSD/powerpc BSDCan 2007

Peripheral devices

– On-chip peripherals

– No auto-enumerating
● Hints mechanism used in early development

– All drivers according to Newbus paradigms
● OCP bus, local bus, PCI/host bridge, TSEC (Ethernet),

QUICC etc.
– bus_space, bus_dma frameworks

● Buses endianness
● bus_space macros -> function ptr ops

Newbus hierarchy

root

nexus RMAN I/O MEM

lbc

ocp

opic

uart tsec

pci

...
RMAN IRQ

i2c

...

Embedding FreeBSD/powerpc BSDCan 2007

Current state of MPC85xx support

– Single/multiuser, networking
● Booting with rootfs mounted from ATA disk, USB, NFS

– Key integrated peripherals supported
● host/PCI bridge
● TSEC (integrated Ethernet)
● UARTs
● QUICC engine (SCC etc.)

– Debugging: kdb/ddb, gdb

– Runs happily on MPC8555, 8541, 8548

Embedding FreeBSD/powerpc BSDCan 2007

Work in progress

– Merging to the FreeBSD source tree

– Started work on Perforce integration, then main CVS

– Targetting 7.0-RELEASE

– CPU variation within the same architecture
● Unlike any other FreeBSD arch
● Single buildworld and release within PowerPC but different

buildkernels (at least for now)
● FPU problems
● arch header files

Embedding FreeBSD/powerpc BSDCan 2007

Methodology notes

– Working with the target machine, i.e. not simulator etc.

– JTAG debugger

– Reviewing code of all other FreeBSD architectures

– Reviewing code of other operating systems for reference

– Come up with an optimal route, following FreeBSD kernel
APIs and established conventions

Embedding FreeBSD/powerpc BSDCan 2007

Concluding remarks

– References
● //depot/projects/e500/
● sys/powerpc/e500
● sys/powerpc/mpc85xx

– Acknowledgements
● Ajay Hampapur, Pedro Marques, Marcel Moolenaar @Juniper
● Marian Balakowicz, Piotr Kruszyński @Semihalf

Embedding FreeBSD/powerpc

Notes on the journey to the embedded world

Rafał Jaworowski
raj@semihalf.com

http://www.semihalf.com/pub/bsdcan/2007_embedding_freebsd.pdf

BSDCan 2007, Ottawa

mailto:raj@semihalf.com
http://www.semihalf.com/pub/bsdcan/2007_embedding_freebsd.pdf

