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motivation

% ld --version

GNU ld 2.17.50 [FreeBSD] 2007-07-03

Copyright 2007 Free Software Foundation, Inc.

This program is free software; you may redistribute it under the terms of

the GNU General Public License. This program has absolutely no warranty.



Goals

I Simple and fast

I Close to feature parity with GNU linkers

I Different when appropriate

I Part of llvm. Same license

I Possibility to introduce features across all parts of the
toolchain

I Make linking great again



history

I ld.bfd got ELF suffort in 1993. Supports multiple formats

I ld.bfd is about 75K lines of C and script

I gold started in may 2006, added in Aug 2006

I gold is 160k lines of C++. Doesn’t use bfd

I gold showed a fast ELF linker is possible



lld history

I old new ELF linker started in Jul 2012

I new new COFF linker stated May 2015

I new new ELF linker started Jul 2015



atom model

I Atom is an indivisible chunk of code or data

I Sections are split into atoms, normally via symbols

I Generic. Needed for MachO

I All work done on a graph of atoms

I On ELF, they have to be merged back

I COMDAT doesn’t quite fit this model



just sections

I On ELF, a section is the atom

I It is explicit in the format, with any number of symbols

I COMDAT is implemented by just not reading some sections

I gc-sections is directly implemented

I linker structure matches ELF spec



differences from other ELF linker

I Library files just provide “lazy” symbols

I Resolution doesn’t have exactly the same semantics

I But matches COFF, and is easier and faster (no groups)

I mmap everything. Don’t use a 32 bit host

I Always a cross linker

I Only add feature if needed. Always allows undef in .so for
example



cool new stuff

I AArch64 support

I Identical Code Folding (unsafe mode only)

I LTO

I Supports new ABIs (-mtls-dialect=gnu2)

I Linker optimizations (SHF MERGE, .eh frame, relocations)

I Fast!

I Maintained



Link Time Optimizations

I Increase the scope of optimizations to (almost) the whole
executable

I The compiler emits bitcode instead of object files

I The linker reads the bitcode files back, resolving symbols

I Bitcode files and object files can be mixed transparently

I All the bitcode files are merged in a single file on which
optimizations are applied

I IPO (e.g. inlining/constant folding) is more effective as
symbols visible only from bitcode are internalized



Identical code folding

I C++ libraries have functions with identical code

I ICF merges these function in a single copy

I (Might) change the semantic of code

I Safe variant (not yet implemented) guarantee that only
functions which address is not used for comparison are folded.



Other linker optimizations

I Contents of SHF MERGE sections are uniqued

I –gc-sections removes dead SHF MERGE entries too

I Strings are tail merged at -O2

I .eh frame is split, CIEs uniqued

I We create a .eh frame hdr

I Relocations are relaxed:
addq a@GOTTPOFF(%rip), %rax →
leaq a@TPOFF(%rax), %rax

movq foo@GOTPCREL(%rip), %rax →
leaq foo(%rip), %rax
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Implementation

I Currently “just” 13k lines

I Archives can go in any order (drop tsort?)

I We create InputSections for each section in the .o

I Special treatment done by specialized classes:
MergeInputSection, EhInputSection.

I Duplicated comdats are not read, symbols in them become
undefined

I For the first part, LTO objects just provide symbols like ELF



Symbol Table

obj1

bar foo

Visibility

IsUsedInRegularObj

...
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SymbolBody

Symbol Table

bar foo zed



layout

I We now know all sections and symbols we need

I We can gc unused sections (and part of merge sections)

I We can merge identical sections (icf)

I Remaining input sections are concatenated

I Linker creates other sections (symbol table for example)



relocation processing

I Lots of relocations, so has to be fast

I Cannot be done in one pass for default layout

I Target just maps relocation type to an expression enum

I Target independent logic decides if we need a GOT, PLT,
dynamic reloc, etc

I Save the computed expression to simplify the relocation
application on a second pass



future lld work

I Version script

I Linker script (buildworld + buildkernel should work)

I Section layout optimization

I Split dwarf (.dwo)

I gdb index

I special case for R X86 64 RELATIVE

I direct binding



integrating in freebsd

I No RW .text support (fixed in FreeBSD)

I Remove dependency on legacy –oformat/-Y (FreeBSD)

I Handle library search differences (FreeBSD)

I Implement -Ttext (lld)

I Implement version scripts (lld)

I Implement linker scripts (lld)

I Testing! (both)


