LLD

The new new ELF linker

Davide ltaliano Rafael Avila de Espindola

BSDCan 2016

"y

outline

» motivation

> history

» differences from other ELF linker
> cool new stuff for freebsd

> implementation

» plan for integration and future work

" g

motivation

% 1d --version

GNU 1d 2.17.50 [FreeBSD] 2007-07-03

Copyright 2007 Free Software Foundation, Inc.

This program is free software; you may redistribute it under the terms of
the GNU General Public License. This program has absolutely no warranty.

Goals

» Simple and fast

> Close to feature parity with GNU linkers
» Different when appropriate

» Part of llvm. Same license

» Possibility to introduce features across all parts of the
toolchain

» Make linking great again

" g

history

v

|d.bfd got ELF suffort in 1993. Supports multiple formats
|d.bfd is about 75K lines of C and script

gold started in may 2006, added in Aug 2006

gold is 160k lines of C++. Doesn't use bfd

gold showed a fast ELF linker is possible

v

v

v

v

" g

lld history

» old new ELF linker started in Jul 2012
» new new COFF linker stated May 2015
» new new ELF linker started Jul 2015

" g

atom model

v

Atom is an indivisible chunk of code or data

v

Sections are split into atoms, normally via symbols
Generic. Needed for MachO

All work done on a graph of atoms

On ELF, they have to be merged back

COMDAT doesn't quite fit this model

v

v

v

v

L

¥

just sections

v

On ELF, a section is the atom

v

It is explicit in the format, with any number of symbols

v

COMDAT is implemented by just not reading some sections

» gc-sections is directly implemented

v

linker structure matches ELF spec

" g

differences from other ELF linker

» Library files just provide “lazy” symbols

» Resolution doesn't have exactly the same semantics

» But matches COFF, and is easier and faster (no groups)
> mmap everything. Don't use a 32 bit host

> Always a cross linker

» Only add feature if needed. Always allows undef in .so for
example

" g

cool new stuff

» AArch64 support

> l|dentical Code Folding (unsafe mode only)

» LTO

» Supports new ABIs (-mtls-dialect=gnu2)

» Linker optimizations (SHF_MERGE, .eh_frame, relocations)
> Fast!

» Maintained

" g

Link Time Optimizations

» Increase the scope of optimizations to (almost) the whole
executable

» The compiler emits bitcode instead of object files
» The linker reads the bitcode files back, resolving symbols
» Bitcode files and object files can be mixed transparently

> All the bitcode files are merged in a single file on which
optimizations are applied

» IPO (e.g. inlining/constant folding) is more effective as

symbols visible only from bitcode are internalized
LB

Identical code folding

v

C—++ libraries have functions with identical code

v

ICF merges these function in a single copy

v

(Might) change the semantic of code

v

Safe variant (not yet implemented) guarantee that only
functions which address is not used for comparison are folded.

" g

Other linker optimizations

» Contents of SHF_MERGE sections are uniqued

» —gc-sections removes dead SHF_MERGE entries too
» Strings are tail merged at -O2

» .eh_frame is split, CIEs uniqued

> We create a .eh_frame_hdr

> Relocations are relaxed:
addq a@GOTTPOFF (%rip), %rax —
leaq a@TPOFF (Yrax), %rax
movq foo@GOTPCREL (Yrip), %rax —
leaq foo(%rip), %rax

L

¥

Fast

gpe|jAos

SPS} Se-WA|| w.p“ >
spsy) bue|d

spsj uibnid pjob
se-WwA||

bue|d

uibn|d pjob
awouyd

121 swouyd

~

| |
© N I M N = O

pIl 01 2ARE[D)

Implementation

» Currently “just” 13k lines
» Archives can go in any order (drop tsort?)
» We create InputSections for each section in the .o

» Special treatment done by specialized classes:
MergelnputSection, EhlnputSection.

» Duplicated comdats are not read, symbols in them become
undefined

> For the first part, LTO objects just provide symbols like ELF

" g

Symbol Table

obj1

Symbol Table

obj2

bar | foo bar | foo | zed foo | zed | local
l A Y A Y

SymbolBody

Visibility Visibility Visibility
IsUsedInRegularObj IsUsedInRegularObj IsUsedInRegularObj
SymbolBody SymbolBody SymbolBody

"

layout

v

We now know all sections and symbols we need

v

We can gc unused sections (and part of merge sections)

» We can merge identical sections (icf)

v

Remaining input sections are concatenated

v

Linker creates other sections (symbol table for example)

" g

relocation processing

» Lots of relocations, so has to be fast
» Cannot be done in one pass for default layout
» Target just maps relocation type to an expression enum

» Target independent logic decides if we need a GOT, PLT,
dynamic reloc, etc

» Save the computed expression to simplify the relocation
application on a second pass

" g

future Ild work

» Version script

» Linker script (buildworld + buildkernel should work)
» Section layout optimization

» Split dwarf (.dwo)

> gdb index

» special case for R_X86_64_RELATIVE

> direct binding

" g

integrating in freebsd

» No RW .text support (fixed in FreeBSD)

» Remove dependency on legacy —oformat/-Y (FreeBSD)
» Handle library search differences (FreeBSD)

» Implement -Ttext (lld)

» Implement version scripts (lld)

» Implement linker scripts (lId)

» Testing! (both)

" g

