
LLD
The new new ELF linker

Davide Italiano Rafael Ávila de Esṕındola

BSDCan 2016



outline

I motivation

I history

I differences from other ELF linker

I cool new stuff for freebsd

I implementation

I plan for integration and future work



motivation

% ld --version

GNU ld 2.17.50 [FreeBSD] 2007-07-03

Copyright 2007 Free Software Foundation, Inc.

This program is free software; you may redistribute it under the terms of

the GNU General Public License. This program has absolutely no warranty.



Goals

I Simple and fast

I Close to feature parity with GNU linkers

I Different when appropriate

I Part of llvm. Same license

I Possibility to introduce features across all parts of the
toolchain

I Make linking great again



history

I ld.bfd got ELF suffort in 1993. Supports multiple formats

I ld.bfd is about 75K lines of C and script

I gold started in may 2006, added in Aug 2006

I gold is 160k lines of C++. Doesn’t use bfd

I gold showed a fast ELF linker is possible



lld history

I old new ELF linker started in Jul 2012

I new new COFF linker stated May 2015

I new new ELF linker started Jul 2015



atom model

I Atom is an indivisible chunk of code or data

I Sections are split into atoms, normally via symbols

I Generic. Needed for MachO

I All work done on a graph of atoms

I On ELF, they have to be merged back

I COMDAT doesn’t quite fit this model



just sections

I On ELF, a section is the atom

I It is explicit in the format, with any number of symbols

I COMDAT is implemented by just not reading some sections

I gc-sections is directly implemented

I linker structure matches ELF spec



differences from other ELF linker

I Library files just provide “lazy” symbols

I Resolution doesn’t have exactly the same semantics

I But matches COFF, and is easier and faster (no groups)

I mmap everything. Don’t use a 32 bit host

I Always a cross linker

I Only add feature if needed. Always allows undef in .so for
example



cool new stuff

I AArch64 support

I Identical Code Folding (unsafe mode only)

I LTO

I Supports new ABIs (-mtls-dialect=gnu2)

I Linker optimizations (SHF MERGE, .eh frame, relocations)

I Fast!

I Maintained



Link Time Optimizations

I Increase the scope of optimizations to (almost) the whole
executable

I The compiler emits bitcode instead of object files

I The linker reads the bitcode files back, resolving symbols

I Bitcode files and object files can be mixed transparently

I All the bitcode files are merged in a single file on which
optimizations are applied

I IPO (e.g. inlining/constant folding) is more effective as
symbols visible only from bitcode are internalized



Identical code folding

I C++ libraries have functions with identical code

I ICF merges these function in a single copy

I (Might) change the semantic of code

I Safe variant (not yet implemented) guarantee that only
functions which address is not used for comparison are folded.



Other linker optimizations

I Contents of SHF MERGE sections are uniqued

I –gc-sections removes dead SHF MERGE entries too

I Strings are tail merged at -O2

I .eh frame is split, CIEs uniqued

I We create a .eh frame hdr

I Relocations are relaxed:
addq a@GOTTPOFF(%rip), %rax →
leaq a@TPOFF(%rax), %rax

movq foo@GOTPCREL(%rip), %rax →
leaq foo(%rip), %rax



Fast

 0

 1

 2

 3

 4

 5

 6

 7

ch
ro

m
e
 i
cf

ch
ro

m
e

g
o
ld

 p
lu

g
in

cl
a
n
g

llv
m

-a
s

g
o
ld

 p
lu

g
in

 f
sd

s

cl
a
n
g
 f

sd
s

llv
m

-a
s 

fs
d
s

sc
y
lla

d
b

re
la

ti
v
e
 t

o
 l
ld

bfd
gold

lld



Implementation

I Currently “just” 13k lines

I Archives can go in any order (drop tsort?)

I We create InputSections for each section in the .o

I Special treatment done by specialized classes:
MergeInputSection, EhInputSection.

I Duplicated comdats are not read, symbols in them become
undefined

I For the first part, LTO objects just provide symbols like ELF



Symbol Table

obj1

bar foo

Visibility

IsUsedInRegularObj

...

SymbolBody

Visibility

IsUsedInRegularObj

...

SymbolBody

obj2

foo zed local

Visibility

IsUsedInRegularObj

...

SymbolBody

SymbolBody

Symbol Table

bar foo zed



layout

I We now know all sections and symbols we need

I We can gc unused sections (and part of merge sections)

I We can merge identical sections (icf)

I Remaining input sections are concatenated

I Linker creates other sections (symbol table for example)



relocation processing

I Lots of relocations, so has to be fast

I Cannot be done in one pass for default layout

I Target just maps relocation type to an expression enum

I Target independent logic decides if we need a GOT, PLT,
dynamic reloc, etc

I Save the computed expression to simplify the relocation
application on a second pass



future lld work

I Version script

I Linker script (buildworld + buildkernel should work)

I Section layout optimization

I Split dwarf (.dwo)

I gdb index

I special case for R X86 64 RELATIVE

I direct binding



integrating in freebsd

I No RW .text support (fixed in FreeBSD)

I Remove dependency on legacy –oformat/-Y (FreeBSD)

I Handle library search differences (FreeBSD)

I Implement -Ttext (lld)

I Implement version scripts (lld)

I Implement linker scripts (lld)

I Testing! (both)


